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Abstract

Sets as Measures: Optimization and Machine Learning

by

Nicholas Boyd

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Benjamin Recht, Co-chair

Professor Michael Jordan, Co-chair

The purpose of this thesis is to address the following simple question:

How do we design efficient algorithms to solve optimization or machine learning problems
where the decision variable (or target label) is a set of unknown cardinality?

In this thesis we show that, in some cases, optimization and machine learning algorithms
designed to work with single vectors can be directly applied to problems involving sets. We
do this by invoking a classical trick: we lift sets to elements of a vector space, namely an
infinite-dimensional space of measures. While this idea has been explored extensively in
theoretical analysis, we show that it also generates efficient practical algorithms.
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Chapter 1

The Basic Idea

1.1 Introduction

The purpose of this thesis is to address the following simple question:

How do we design efficient algorithms to solve optimization or machine learning problems
where the decision variable (or target label) is a set of unknown cardinality?

Optimization and machine learning have proved remarkably successful in applications re-
quiring the choice of single vectors. Some tasks, in particular many inverse problems, call for
the design, or estimation, of sets of objects. When the size of these sets is a priori unknown,
directly applying optimization or machine learning techniques designed for single vectors
appears difficult. The work in this thesis shows that a very old idea for transforming sets
into elements of a vector space (namely, a space of measures), a common trick in theoretical
analysis, generates effective practical algorithms.

Essentially everything in this thesis follows from the following simple observation: a
finite set of objects {θ1, . . . , θn} ⊂ Θ can be identified with the measure

∑n
i=1 δθi under the

following correspondence:

{θ1, . . . , θn} ↔
n∑
i=1

δθi . (1.1)

Here δθ is a point mass at θ, defined by

δθ(A) =

{
1 if θ ∈ A
0 if θ 6∈ A.

(1.2)

This measure is an element of a vector space in which we can directly apply many standard
optimization and machine learning algorithms.

Chapter 1 explains this simple idea and sets up the mathematical framework for working
with measures.
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Chapter 2 describes a class of infinite-dimensional convex optimization problems with set-
valued decision variables that we term sparse linear inverse problems (SLIP), and establishes
a strong connection between these problems and the well-known framework of atomic norms.

Chapter 3 shows that a classical convex optimization algorithm can be directly applied
to sparse linear inverse problems, and introduces a simple extension with vastly superior
practical performance: the Alternating Descent Conditional Gradient Method (ADCG). Fi-
nally, we demonstrate the efficacy of ADCG in three application areas. Chapters 2 and 3
are based on the paper:

N. Boyd, G. Schiebinger, and B. Recht. “The Alternating Descent Conditional Gradient
Method for Sparse Inverse Problems”. In: SIAM Journal on Optimization 27.2 (2017),
pp. 616–639.

Chapter 4 explores the application of these ideas to a classical statistical estimation prob-
lem: fitting adaptive splines and adaptive spline generalized additive models to data. We
also show a simple extension of the standard adaptive spline setup that allows for feature se-
lection in generalized additive models; this modification requires a slight extension of ADCG
to handle simple constraints. Chapter 4 is based on the paper:

N. Boyd, T. Hastie, S. Boyd, B. Recht, and M. Jordan. “Saturating Splines and Feature
Selection”. In: Journal of Machine Learning Research 17.178 (2017).

In Chapter 5 we revisit the single molecule localization microscopy application from Chap-
ter 3 and show how to train neural networks that output sets of points. To do so we treat
the output of the network, a collection of points, as a measure and use techniques from
statistics, namely embeddings of measures into reproducing kernel Hilbert spaces, to define
a loss function. The material in Chapter 5 is from the paper:

N. Boyd, E. Jonas, H. Babcock, and B. Recht. “DeepLoco: Fast 3D Localization Microscopy
Using Neural Networks”. In: bioRxiv (2018).

1.2 Common notation

In this section we introduce common notation. We first informally describe the setup before
giving rigorous definitions. While we assume a basic familiarity with measure theory (for
a review see [42]), a reader unfamiliar with the subject can follow along without too much
trouble. We conclude with a brief discussion of why we consider measures the natural choice.

The objects of interest in this thesis are sets of points of the form {θ1, . . . , θn} ⊂ Θ. We’ll
also often deal with weighted sets of points, of the form {(w1, θ1), . . . , (wn, θn)} ⊂ R × Θ.
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We’ll often talk about unweighted sets of points (like γ) as weighted collections, in which
case we’ll take each wi to be one. We’ll delay discussion of the set Θ — which we’ll often
call the parameter space — until later, but a good example to keep in mind would be the
unit box in Rp for p small: {x : ‖x‖∞ ≤ 1}.

The main idea in this thesis is to make use of a bijection between weighted collections
of (unique) objects in Θ and finitely-supported atomic signed measures on Θ. The bijection
associates a weighted collection γ = {(w1, θ1), . . . , (wn, θn)} with the measure

M(γ) =
n∑
i=1

wiδθi . (1.3)

Again, δθ is a point-mass supported on θ. Similarly, if µ is a finitely-supported atomic
measure on Θ, M−1(µ) is a well-defined weighted set of points. We will call such measures
sparse.

We’ll often move back and forth between sparse measures and weighted collections, so
we highlight two (very simple) identities we will use frequently. In the following, µ =M(γ).
If φ is a (bounded, continuous) function from Θ into a vector space there is a natural lift to
a linear operator Φ on atomic measures (indeed, it is well defined for all Borel measures of
finite total variation),

Φµ =

∫
φ(θ)dµ(θ) =

∑
i

wiφ(θi). (1.4)

We stress here that while Φ is always a linear operator, φ need not be linear: indeed, in all
examples in this thesis it is not. The total variation of the measure µ (|µ|(Θ)) is exactly the
`1 norm of the weights w considered as a vector:

‖µ‖TV = ‖w‖1 =
∑
i

|wi|. (1.5)

In light of (1.5), we’ll often use ‖µ‖1 interchangeably with ‖µ‖TV.

Formal requirements

Throughout we’ll assume Θ is a compact subset of a differentiable manifold equipped with the
Borel σ-algebra. In this case, the space of measures of finite total variation on Θ is a Banach
space. Furthermore, we’ll assume φ (or any function on Θ) is bounded and continuous.

Why measures?

Almost all of the measures in this thesis will be atomic and supported on finitely many points
(sparse), so they may be represented as weighted collections, in which case (1.4) and (1.5)
are (essentially) the only identities a reader will need.

This observation begs the question: why deal with measures at all? Indeed, all of our
algorithms will manipulate finite sets of weighted points, not general measures; can we
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not deal directly with these objects mathematically? The answer is that we could do this
with a bit of additional work, but we believe that measures are much more familiar to
most readers than other options. Optimization algorithms typically operate in (at least) a
Banach space — the space of weighted collections is not complete. In fact, depending on the
choice of topology for this space — which can be identified with the space of formal linear
combinations of elements from Θ — we might end up with a (relatively) odd space unfamiliar
to most readers, or a space essentially identical to the space of measures we’ve chosen. For
this reason, we feel that working with measures is a good compromise between familiarity
(to most readers) and mathematical rigor. With that said, we remind the reader that this
distinction is mostly theoretical: the algorithms we present manipulate sparse measures,
which may be identified with weighted collections.
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Chapter 2

Sparse Linear Inverse Problems

In this chapter we introduce a particular class of convex optimization problems on measures
which arise naturally when the decision variable is a weighted collection. This optimization
problem has a long history, and has appeared recently in theoretical work as a natural
generalization of compressed sensing. We discuss connections to conventional compressed
sensing and atomic norm problems. To provide motivation we describe several problems that
can be formulated using this framework. Finally we provide a simple theoretical result that
ensures we can always find a solution to a SLIP that is atomic and finitely supported.

2.1 Introduction

A ubiquitous prior in modern statistical signal processing asserts that an observed signal
is the noisy observation of a few weighted sources. In other words, compared to the entire
dictionary of possible sources, the set of sources actually present is sparse. In the most
abstract formulation of this prior, each source is chosen from a non-parametric dictionary, but
in many cases of practical interest the sources are parameterized. Hence, solving the inverse
problem amounts to finding a collection of a few parameters and weights that adequately
explains the observed signal.

As an example, consider the idealized task of identifying the aircraft that explain an
observed radar signal. The sources are the aircraft themselves, and each is parameterized
by, perhaps, its position and velocity relative to the radar detector. The inverse problem is
to recover the number of aircraft present, along with each of their parameters.

As discussed in Chapter 1, any collection of weighted sources can be represented as a
measure on the parameter space: each source corresponds to a single point mass at its
corresponding parameter value. We will call atomic measures supported on finitely many
points sparse measures. When the parameter spaces are infinite—for example the set of all
velocities and positions of aircraft — the space of bounded measures over such parameters
is infinite-dimensional. This means that optimization problems searching for parsimonious
explanations of the observed signal must operate over an infinite-dimensional space.
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Many alternative formulations of the sparse inverse problem have been proposed to avoid
the infinite-dimensional optimization required in the sparse measure setup. The most canon-
ical and widely applicable approach is to form a discrete grid over the parameter space
and restrict the search to measures supported on the grid. This restriction produces a
finite-dimensional optimization problem [118, 78, 113]. In certain special cases, the infinite-
dimensional optimization problem over measures can be reduced to a problem of moment
estimation, and spectral techniques or semidefinite programming can be employed [50, 90,
112, 19]. More recently, in light of much of the work on compressed sensing and its generaliza-
tions, another proposal operates on atomic norms over data [21], opening other algorithmic
possibilities.

While these finite-dimensional formulations are appealing, they all essentially treat the
space of sources as an unstructured set, ignoring natural structure (such as differentiability)
present in many applications. All three of these techniques have their individual drawbacks,
as well. Gridding only works for very small parameter spaces, and introduces artifacts that
often require heuristic post-processing [113]. Moment methods have limited applicability,
are typically computationally expensive, and, moreover, are sensitive to noise and estimates
of the number of sources. Finally, atomic norm techniques do not recover the parameters of
the underlying signal, and as such are more naturally applied to denoising problems. For a
much more in-depth discussion of atomic norms, see §2.3.

We argue that all of these issues can be alleviated by returning to the original formulation
of the estimation problem as an optimization problem over a space of measures. Working
with measures explicitly exposes the underlying parameter space, which allows us to consider
algorithms that make local moves within parameter space. Chapters 3 and 4 demonstrate
that operating on an infinite-dimensional space of measures is not only feasible algorithmi-
cally, but that the resulting algorithms outperform techniques based on gridding or moments
on a variety of real-world signal processing tasks. In Chapter 3 we formalize a general ap-
proach to solving parametric sparse inverse problems via the conditional gradient method
(CGM), also know as the Frank-Wolfe algorithm. We show how to augment the classical
CGM with nonconvex local search exploiting structure in the parameter space. This hybrid
scheme, which we call the alternating descent conditional gradient method (ADCG), enjoys
both the rapid local convergence of nonconvex programming algorithms and the stability
and global convergence guarantees associated with convex optimization.

Mathematical setup

In this subsection we formalize the sparse inverse problem as an optimization problem over
measures and discuss a convex heuristic.

We assume the existence of an underlying collection of objects, called sources. Each
source has a scalar weight w, and a parameter θ ∈ Θ. We require the parameter space
be measurable (that is, equipped with a σ-algebra) and amenable to local, derivative-based
optimization; formally, we’ll want Θ to be a compact subset of a differentiable manifold.
Some examples to keep in mind would be Θ a compact subset of Rp for some small p,
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or the sphere Sp considered as a differentiable manifold. An element θ of the parameter
space Θ may describe, for instance, the position, orientation, and polarization of a source.
The weight w may encode the intensity of a source, or the distance of a source from the
observation device. Our goal is to recover the number of sources present, along with their
individual weights and parameters. We do not observe the sources directly, but instead are
given a single, noisy observation.

The observation model we use is completely specified by a function φ : Θ → Rd, which
gives the d-dimensional observation of a single, unit-weight source parameterized by a point
in Θ. A single source with parameter θ and weight w generates the observation wφ(θ) ∈ Rd :
that is, the observation of a lone source is homogeneous of degree one in its weight. Finally,
we assume that the observation generated by a weighted collection of sources is additive. In
other words, the (noise-free) observation of a weighted collection is generated by the mapping

γ = {(wi, θi)}Ki=1 7→
K∑
i=1

wiφ(θi) ∈ Rd. (2.1)

We refer to the collection γ = {(wi, θi)}Ki=1 as the signal parameters, and the vector
∑K

i=1 wiφ(θi) ∈
Rd as the noise-free observation. We require that φ be bounded: ‖φ(θ)‖2

2 ≤ 1 for all θ, and
further that φ be differentiable in θ. Finally, let us emphasize that we make no further
assumptions about φ: in particular it does not need to be linear. It’s worth noting here that
with K and θ1, . . . , θK held fixed, (2.1) is linear in the weights w1, . . . , wK .

Our goal is to recover the true weighted collection of sources, {(w̃i, θ̃i)}K̃i=1, from a single
noisy observation:

y '
K̃∑
i=1

w̃iφ(θ̃i).

We emphasize that the goal is not to denoise the vector y: that is we are not satisfied with

recovering the noise-free observation (i.e. the vector
∑K̃

i=1 w̃iφ(θ̃i)) ∈ Rd), but rather we

require an estimate of the true signal parameters {(w̃i, θ̃i)}. This is in stark contrast with
the atomic norm case discussed in §2.3.

One approach would be to attempt to minimize a (differentiable) convex loss, `, that
describes the likelihood of observing the vector y given the expected output for an estimated
collection of sources:

minimize
w,θ,K

`

(
K∑
i=1

wiφ(θi)

)
subject to K ≤ N.

(2.2)

Here N is a posited upper bound on the number of sources. For example, if ` is the neg-
ative log-likelihood of the noise process, problem (2.2) corresponds to maximum-likelihood
estimation of the true sources. Unfortunately, (2.2) is nonconvex in the variables w, θ, and
K. As such, algorithms designed to solve this problem are hard to reason about and come
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with few guarantees. Also, in practice they often suffer from sensitivity to initialization. In
this thesis, we lift the problem to a space of (signed) measures on Θ; this lifting allows us
to apply a natural heuristic to devise a convex surrogate for problem (2.2).

We can encode an arbitrary, weighted collection of sources γ as a sparse measure µ on
Θ, with mass wi at point θi: µ =

∑K
i=1wiδθi = M(γ). As a consequence of the additivity

and homogeneity in our observation model, the total observation of a collection of sources
encoded in the measure µ is a linear function Φ of µ:

Φµ =

∫
φ(θ)dµ(θ).

We call Φ the forward operator. For atomic measures of the form µ =
∑n

i=1wiδθi , this clearly
agrees with (2.1); but it is defined for more general measures on Θ.

We now introduce the sparse inverse problem as an optimization problem over the Banach
space of bounded, signed measures on the measurable space Θ equipped with the total
variation norm [34]. To reiterate, our goal is to recover µtrue from an observation

y ' Φµtrue

corrupted by noise. Recovering the signal parameters without any prior information is, in
most interesting problems, impossible; the operator Φ is almost never injective. However, in
a sparse inverse problem we have the prior belief that the number of sources present, while
still unknown, is small. That is, we assume that µtrue is an atomic measure supported on
very few points.

To make the connection to compressed sensing clear, we refer to such measures as sparse
measures. Note that while we are using the language of recovery or estimation in this section,
the optimization problem we introduce is also applicable in cases where these may not be a
true measure underlying the observation model. In §2.2 we give several examples that are
not recovery problems.

We estimate the signal parameters encoded in µtrue by minimizing the loss ` applied to
Φµ:

minimize ` (Φµ)

subject to |supp(µ)| ≤ N,
(2.3)

where the optimization is over the Banach space of signed measures (on Θ) equipped with
the total variation norm. Here we constrain the cardinality of the support of the measure µ
by N , a posited upper bound on the size of the support of the true measure µtrue. Although
here and elsewhere in this thesis we place no constraint on the sign of w (and hence µ), all
of our discussion and algorithms can be easily extended to the non-negative case by adding
the requirement that µ be a non-negative measure.

While the objective function in (2.3) is convex, the constraint on the support of µ is
nonconvex. A common heuristic in this situation is to replace the nonconvex constraint
with a convex surrogate. The standard surrogate for a cardinality constraint on a measure
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is a constraint on the total variation [19]. This substitution results in the following convex
approximation to (2.3):

minimize ` (Φµ)

subject to |µ|(Θ) ≤ τ.
(2.4)

Here τ > 0 is a parameter that controls the total mass of µ and empirically controls the car-
dinality of solutions to (2.4). While problem (2.4) is convex, it is over an infinite-dimensional
space, and it is not possible to represent an arbitrary measure in a computer. A priori, an
approximate solution to (2.4) may have arbitrarily large support, though we prove in §3.4
that we can always find solutions supported on at most d + 1 points. In practice, however,
we are interested in approximate solutions of (2.4) supported on far, far fewer than d + 1
points.

In Chapter 3, we propose an algorithm to solve (2.4) in the case where Θ is amenable
to local, derivative based optimization — in other words, the case where φ is differentiable.
Our algorithm is based on a variant of the conditional gradient method that takes advantage
of the differentiable nature of φ, and is guaranteed to produce approximate solutions with
bounded support.

Relationship to the lasso. Readers familiar with techniques for estimating sparse vectors
may recognize (2.4) as a continuous analogue of the standard lasso. In particular, the
standard lasso is an instance of (2.4) with `(o) = 1

2
‖o − y‖2

2 and Θ = {1, . . . , k}. In that
case, a measure over Θ can be represented as a vector v in Rk and the forward operator Φ
as a matrix in Rd×k. The total variation of the measure v is then simply

∑
i |vi| = ‖v‖1. We

caution the reader that this discrete setup is substantially different as the parameter space
has no differential structure. However, to make the connection to the finite dimensional case
clear, we will use the notation ‖µ‖1 to refer to the total variation of the measure µ.

A note on measures. While the optimization problem (2.4) has as the decision variable a
general measure µ on Θ, due to the nature of the algorithms we discuss we will only ever deal
with sparse measures. Sparse measures, that is measures of the form µ =

∑K
i=1 wiφ(θi), can

always be thought of as simple sets of weighted parameters: {(wi, θi)}Ki=1, or, equivalently a

pair of vectors w ∈ RK , ~θ ∈ ΘK . Indeed, we will often move back and forth between these
equivalent representations. The reader unfamiliar with measure theory can think of the
algorithm as operating on this alternative representation directly. Two important identities
to keep in mind when dealing with sparse measures are (2.1) and

‖µ‖1 = ‖w‖1.

For a review of basic measure theory, see [42].
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2.2 Example applications

Many practical problems can be formulated as instances of (2.4). In this section we briefly
outline a few examples to motivate our study of this problem.

Single molecule localization microscopy. The diffraction of light imposes a physical
limit on the resolution of optical images. The goal of single molecule localization microscopy
(SMLM) superresolution imaging is to remove the blur induced by diffraction as well as the
effects of pixelization and noise. For images composed of a collection of point sources of
light, this can be posed as a sparse inverse problem as follows. The parameters θ1, . . . , θK
denote the locations of K point sources (in [0, 1]2 or [0, 1]3), and wi > 0 denotes the intensity,
or brightness, of the ith source. The image of the ith source is given by wiφ(θi), where φ
is the pixelated point spread function of the imaging apparatus. One option for the loss
function is `(o) = 1

2
‖o − y‖2, where y is the observed image. By solving a version of (2.4)

it is sometimes possible to localize the point sources better than the diffraction limit—even
with extreme pixelization. Astronomers use this framework to deconvolve images of stars
to angular resolution below the Rayleigh limit [92]. In biology this tool has revolutionized
imaging of sub-cellular features [38, 101]. A variant of this framework allows imaging through
scattering media [76]. In §3.3, we show that our algorithm improves upon the current state
of the art for localizing point sources in a fluorescence microscopy challenge dataset.

Linear system identification. Linear time-invariant (LTI) dynamical systems are used
to model many physical systems. Such a model describes the evolution of an output yt ∈ R
based on the input ut ∈ R, where t ∈ Z+ indexes time. The internal state at time t of the
system is parameterized by a vector xt ∈ Rm, and its relationship to the output is described
by

xt+1 = Axt +But

yt = Cxt.

Here C is a fixed matrix, while x0, A, and B are unknown parameters.
Linear system identification is the task of learning these unknown parameters from input-

output data—that is a sequence of inputs u1, . . . , uT and the observed sequence of outputs
y1, . . . , yT [105, 50]. We pose this task as a sparse inverse problem. Each source is a small
LTI system with 2-dimensional state—the measurement model gives the output of the small
system on the given input. To be concrete, the parameter space Θ is all tuples of the form
(x0, r, α,B) where x0 and B both lie in the `∞ unit ball in R2, r is in [0, 1], and α is in [0, π].
The LTI system that each source describes has

A = r

[
cos(α) − sin(α)
sin(α) cos(α)

]
, C =

[
1 0

]
.

The mapping φ from the parameters (x0, r, α,B) to the output of the corresponding LTI
system on input u1, . . . , uT is differentiable. In terms of the overall LTI system, adding the
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output of two weighted sources corresponds to concatenating the corresponding parameters.
Again, a reasonable choice for the loss function is the squared error between the expected
observations and the actual observations. In §3.3, we show that our algorithm matches the
state of the art on two standard system identification datasets.

Matrix completion. The task of matrix completion is to estimate all entries of a large
matrix given observations of a few entries. Clearly this task is impossible without prior
information or assumptions about the matrix. If we believe that a low-rank matrix will
approximate the truth well, a common heuristic is to minimize the squared error subject
to a nuclear norm bound. For background in the theory and practice of matrix completion
under this assumption see [7, 20]. We solve the following optimization problem:

min
‖A‖∗≤τ

‖M(A)− y‖2.

Here M is the masking operator, that is, the linear operator that maps a matrix A ∈ Rn×m

to the vector containing its observed entries, and y is the vector of observed entries. We
can rephrase this in our notation by letting Θ = {(u, v) ∈ Rn × Rm : ‖u‖2 = ‖v‖2 = 1},
φ((u, v)) = M(uvT ), and `(·) = ‖ · −y‖2. In §3.3, we show that our algorithm achieves state
of the art results on the Netflix Challenge, a standard benchmark in matrix completion.

Bayesian experimental design. In experimental design we seek to estimate a vector
x ∈ Rd from measurements of the form

yi = f(θi)
Tx+ εi.

Here f : Θ → Rd is a known differentiable feature function and εi are independent noise
terms. We want to choose θi, . . . , θk to minimize our uncertainty about x — if each measure-
ment requires a costly experiment, this corresponds to getting the most information from a
fixed number of experiments. For background, see [91].

In general, this task in intractable. However, if we assume εi are independently distributed
as standard normals and x comes from a standard normal prior we can analytically derive
the posterior distribution of x given y1, . . . , yk, as the full joint distribution of x, y1, . . . , yk is
normal.

One notion of how much information y1, . . . , yk carry about x is the entropy of the poste-
rior distribution of x given the measurements. We can then choose θ1, . . . , θk to minimize the
entropy of the posterior, which is equivalent to minimizing the (log) volume of an uncertainty
ellipsoid. With this setup, the posterior entropy is (up to additive constants and a positive
multiplicative factor) simply

− log det

(
I +

∑
i

f(θi)f(θi)
T

)−1

.
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To put this in our framework, we can take φ(θ) = f(θ)f(θ)T and `(M) = − log det(I +
M)−1. We relax the requirement to choose exactly k measurement parameters and instead
search for a non-negative sparse measure with bounded total mass, giving us an instance of
(2.4).

Fitting mixture models to data. Given a parametric distribution P (x|θ) we consider
the task of recovering the components of a mixture model from i.i.d. samples. For background
see [69]. To be more precise, we are given data {x1, . . . , xd} sampled i.i.d. from a distribution
of the form P (x) =

∫
θ∈Θ

P (x|θ)π(θ). The task is to recover the mixing distribution π. If
we assume π is sparse, we can phrase this as a sparse inverse problem. To do so, we choose
φ(θ) = (P (xi|θ))di=1. A common choice for ` is the (negative) log-likelihood of the data: i.e.,
`(p) = −

∑
i log pi. The obvious constraints here are

∫
dπ(θ) ≤ 1, π ≥ 0.

Design of numerical quadrature rules. In many numerical computing applications we
require fast procedures to approximate integration against a fixed measure. One way to do
this is use a quadrature rule: ∫

f(θ)dp(θ) '
k∑
i=1

wif(xi).

The quadrature rule, given by wi ∈ R and xi ∈ Θ, is chosen so that the above approximation
holds for functions f in a certain function class. The pairs (xi, wi) are known as quadrature
nodes. In practice, we want quadrature rules with very few nodes to speed evaluation of the
rule.

Often we don’t have an a priori description of the function class from which f is chosen,
but we might have a finite number of examples of functions in the class, f1, . . . , fd, along
with their integrals against p, y1, . . . , yd. In other words, we know that∫

fi(θ)dp(θ) = yi.

A reasonable quadrature rule should approximate the integrals of the known fi well.
We can phrase this task as a sparse inverse problem where each source is a single quadra-

ture node. In our notation, φ(θ) = (f1(θ), . . . , fd(θ)). Assuming each function fi is differen-
tiable, φ is differentiable. A common choice of ` for this application is simply the squared
difference from y. For more discussion of the design of quadrature rules using the conditional
gradient method, see [8, 70].

Neural spike sorting. In this example we consider the voltage v recorded by an extracel-
lular electrode implanted in the vicinity of a population of neurons. Suppose that this popu-
lation of neurons contains T types of neurons, and that when a neuron of type k fires at time
t ∈ R, an action potential of the form φ(t, k) is recorded. Here φ : [0, 1]× {1, . . . , T} → Rd
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is a vector of voltage samples. Note that φ is not differentiable in its last argument. The
algorithms we discuss in this thesis can still be applied in this case, but any steps leveraging
differentiability of φ must operate only on its first argument. If we denote the parame-
ters of the ith neuron by θi = (ti, ki), then the total voltage v ∈ Rd can be modeled as a
superposition of these action potentials:

v =
K∑
i=1

wiφ(θi).

Here the weights wi > 0 can encode the distance between the ith neuron and the electrode.
The sparse inverse problem in this application is to recover the parameters θ1, . . . , θK and
weights w1, . . . , wK from the voltage signal v. For background see [37].

Designing radiation therapy. External radiation therapy is a common treatment for
cancer in which several beams of radiation are fired at the patient to irradiate tumors. The
collection of beam parameters (their intensities, positions, and angles) is called the treat-
ment plan, and is chosen to minimize an objective function specified by an oncologist. The
objective usually rewards giving large doses of radiation to tumors, and low dosages to sur-
rounding healthy tissue and vital organs. Plans with few beams are desired as repositioning
the emitter takes time—increasing the cost of the procedure and the likelihood that the
patient moves enough to invalidate the plan.

A beam fired with intensity w > 0 and parameter θ delivers a radiation dosage wφ(θ) ∈
Rd. Here the output is interpreted as the radiation delivered to each of d voxels in the body
of a patient. The radiation dosage from beams with parameters θ1, . . . , θK and intensities
w1, . . . , wK add linearly, and the objective function is convex. For background see [57].

2.3 Relationship to atomic norm problems

Problems similar to (2.4) have been widely studied through the lens of atomic norms [21].
In this section we review the definition of an atomic norm and examine the intimate connec-
tion between (2.4) and a particular atomic norm problem. We discuss the advantages and
disadvantages of each formulation.

The connection we make in this section is analogous to the simple observation that all
quadratic norms are equivalent to the standard `2-norm after a linear transformation. That
is, for every quadratic norm defined by

‖x‖2
P = xTPx

for a positive-definite matrix P , we have that

‖x‖2
P = inf

z
{‖z‖2

2 : Az = x}.
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In this case A is a any square root of P−1 (including rectangular square roots where z is in
a higher-dimensional space than x). As we will see, in the case of atomic norms and sparse
linear inverse problems we have an analogous identity:

‖x‖A = inf
µ
{‖µ‖1 : Φµ = x}.

Just as P has many square roots in the quadratic norm case, there are many possible choices
for Φ (and Θ) in the atomic norm case. In this and the following chapter, we argue that for
atomic norms generated by an underlying sparse linear inverse problems,(2.4) is the most
natural formulation.

An analogous atomic norm problem

The atomic norm ‖ · ‖A corresponding to a suitable collection of atoms A ⊂ Rd is the
Minkowski functional of conv(A), defined by

‖x‖A = inf{τ ≥ 0 : x ∈ τconv(A)}.

Here conv(A) is the convex hull of A. The atomic norm, while not properly a norm without
additional restrictions [21], is always a convex function. Much research has gone into the
problem of estimating a vector x ∈ Rd that is believed to be a sum of a few elements of A,
using the atomic norm as a regularizer [21, 95].

It is tempting to approach (2.2) using the atomic norm generated by the set A = {±φ(θ) :
θ ∈ Θ}. Indeed, the noiseless signal x is a sum of a few (weighted) elements of A. The atomic
norm analogue to (2.4) is given by

minimize ` (x)

subject to x ∈ τconv(A).
(2.5)

We’ll show that the infinite-dimensional optimization problem (2.4) and the finite-dimensional
atomic norm problem (2.5) are equivalent (in the sense of optimal objective value) under the
(linear) change of variables

µ 7→ Φµ. (2.6)

Lemma 1 shows that the feasible set of (2.5) is exactly the image of the feasible set of (2.4)
under the linear transformation Φ, which implies that the optimal objective values of (2.4)
and (2.5) are the same, and that the solutions are linked by x? = Φµ?.

Lemma 1. conv(A) = {Φµ : ‖µ‖1 ≤ 1}

Proof. It’s clear that conv(A) ⊂ {Φµ : ‖µ‖1 ≤ 1}: the convex hull is smallest convex set
containing {±φ(θ) : θ ∈ Θ}, which are the images of the measures ±δθ under Φ.

The other direction is slightly more difficult. Suppose x =
∫
φ(θ)dµ(θ), with ‖µ‖1 ≤ 1

and x 6∈ conv(A). Now we’d like to strongly separate {x} from conv(A) using Corollary 1.4.2
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from [99]. This requires x to be outside of the closure of conv(A). Fortunately, conv(A) is
already closed. To see this, note that A is compact as it is the union of two sets, each of which
is compact as they are the image of the compact set Θ under the continuous function φ.
Finally, as A is a compact set in a finite-dimensional space, Caratheodory’s theorem implies
that its convex hull is also compact [99, Theorem 17.2].

Then by [99, Corollary 1.4.2], there exists a hyperplane separating x and conv(A) strongly.
Let v be the normal vector to the separating hyperplane. Then we have 〈v, x〉 > supθ±〈v, φ(θ)〉 =
supθ |〈v, φ(θ)〉|. This is a contradiction as 〈v, x〉 = 〈v,

∫
φ(θ)dµ(θ)〉 =

∫
〈v, φ(θ)〉dµ(θ) ≤

supθ |〈v, φ(θ)〉|‖µ‖1 ≤ supθ |〈v, φ(θ)〉|.

Sparse Solutions

Lemma 1 suggests a simple method to prove that (2.4) always has a sparse solution: apply
Caratheodory’s theorem to the set {Φµ : ‖µ‖1 ≤ 1}.

Lemma 2. (2.4) has at least one sparse solution.

Proof. Let µ? be a solution of (2.4). Then Φµ? ∈ τconv({±φ(θ) : θ ∈ Θ}). Caratheodory’s
theorem for convex hulls then implies that Φµ? =

∑d+1
i=1 wiφ(θi) with ‖w‖1 ≤ τ , θi ∈ Θ. Let

µ =
∑

iwiδθi . Then µ is sparse and optimal for (2.4).

Discussion

Much of the literature on sparse inverse problems focuses on problem (2.5), as opposed to the
infinite-dimensional problem (2.4). This focus is due to the fact that (2.5) has algorithmic
and theoretical advantages over (2.4). First and foremost, (2.5) is finite-dimensional, which
means that standard convex optimization algorithms may apply. Additionally, the geometry
of the atomic norm ball, conv{±φ(θ) : θ ∈ Θ}, gives clean geometric insight into when the
convex heuristic will work [21].

With that said, we hold that the infinite-dimensional formulation we study has dis-
tinct practical and theoretical advantages over the atomic norm problem (2.5), at least
when one is interested in (2.3). A solution x? to the atomic norm problem is an estimate
of the vector Φµtrue, while what we actually seek is an estimate of the signal parameters
{(w1, θ1), . . . , (wk, θk)}. In many applications, it is this atomic decomposition µ that is of
interest, and not the optimal point x? of (2.5). Reconstructing an optimal µ? for prob-
lem (2.4) from x? can be highly nontrivial; for many measurement models this is as hard as
solving (2.4). As such, an algorithm that returns x? is useless in the context of solving the
original signal estimation task. For example, when designing radiation therapy, the measure
µ? encodes the optimal beam plan directly, while the vector x? = Φµ? is simply the pattern
of radiation that the optimal plan produces. Likewise, in superresolution microscopy, µ? en-
codes the locations and intensities of the localized fluorophores, while x? is the blurry image
they produce. For this reason, an algorithm that simply returns the vector x?, without the
underlying atomic decomposition, is not always useful in practice.
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Additionally, the measure-theoretic framework exposes the underlying parameter space,
which in many applications comes with meaningful and useful structure. Furthermore, in
many applications the measurement operator φ is known, but there may be no way to
compute ‖x‖A — meaning that many standard convex optimization algorithms cannot be
immediately applied to the atomic norm problem. Finally, näıve interpretation of the finite-
dimensional optimization problem treats the parameter space as an unstructured set; keeping
the structure of the parameter space in mind makes extensions such as ADCG that make
local movements in parameter space natural and uniform across applications.
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Chapter 3

Algorithms for Sparse Linear Inverse
Problems

This chapter presents a variant of the classical conditional gradient method for sparse linear
inverse problems first proposed in:

N. Boyd, G. Schiebinger, and B. Recht. “The Alternating Descent Conditional Gradient
Method for Sparse Inverse Problems”. In: SIAM Journal on Optimization 27.2 (2017),
pp. 616–639.

Our algorithm combines nonconvex and convex optimization techniques: we propose
global conditional gradient steps alternating with nonconvex local search exploiting the dif-
ferentiable observation model. This hybridization gives the theoretical global optimality
guarantees and stopping conditions of convex optimization along with the performance and
modeling flexibility associated with nonconvex optimization. Our experiments demonstrate
that our technique achieves state-of-the-art results in several applications.

3.1 Conditional gradient method

In this section we present our main algorithmic development. We begin with a review of the
classical conditional gradient method (CGM) for finite-dimensional convex programs. We
then apply the CGM to the sparse inverse problem (2.4). In particular, we augment this al-
gorithm with a local search subroutine that significantly improves the practical performance.

The classical CGM solves the following optimization problem:

minimize
x∈C

f(x), (3.1)

where C is a bounded convex set and f is a differentiable convex function.
The CGM proceeds by iteratively solving linearized versions of (3.1). At iteration k, we

form the standard linear approximation to the function f at the current point xk:

f̂k(s) = f(xk) + f ′(s− xk;xk).
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Here f ′(s−xk;xk) is the directional derivative of the function f at xk in the direction s−xk.
When f is differentiable, f ′(s − xk;xk) is more commonly written as 〈∇f(xk), s − xk〉; we
use the directional derivative to make the extension to optimization on measures easier. As
f is convex, this approximation is a global lower bound. We then minimize the linearization
over the feasible set to get a potential solution sk. As sk minimizes a simple approximation
of f that degrades with distance from xk we take a convex combination of sk and xk as the
next iterate. We summarize this method in Algorithm 1.

Algorithm 1 Conditional gradient method (CGM)

For k = 1, . . . kmax

1. Linearize: f̂k(s)← f(xk) + f ′(s− xk;xk).

2. Minimize: sk 3 arg mins∈C f̂k(s).

3. Tentative update: x̃k+1 ← k
k+2

xk + 2
k+2

sk.

4. Final update: Choose xk+1 such that f(xk+1) ≤ f(x̃k+1).

It is important to note that minimizing f̂k(s) over the feasible set C in step 2 may be quite
difficult and requires an application-specific subroutine.

One of the more remarkable features of the CGM is step 4. While the algorithm converges
using only the tentative update in step 3, all of the convergence guarantees of the algorithm
are preserved if one replaces x̃k+1 with any feasible xk+1 that achieves a smaller value of
the objective. There are thus many possible choices for the final update in step 4, and the
empirical behavior of the algorithm can be quite different for different choices. One common
modification is to do a line-search:

xk+1 = arg min
x∈conv(xk,sk)

f(x).

We use conv to denote the convex hull—in this last example, a line segment. Another variant,
the fully-corrective conditional gradient method, chooses

xk+1 = arg min
x∈conv(xk,s1,...,sk)

f(x).

In the next section, we propose a natural choice for this step in the case of measures that
uses local search to speed-up the convergence of the CGM.

One appealing aspect of the CGM is that it is very simple to compute a lower bound on
the optimal value f? as the algorithm runs. As f̂k lower-bounds f , we have

f(s) ≥ f̂k = f(xk) + f ′(s− xk;xk) = f̂k(s)
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for any s ∈ C. Minimizing both sides over s gives us the elementary bound

f? ≥ f̂k(sk).

The right hand side of this inequality is readily computed after step (2). One can prove that
the bound on suboptimality derived from this inequality decreases to zero [60], which makes
it a very useful termination condition.

CGM for sparse linear inverse problems

In this section we apply the classical CGM to the sparse inverse problem (2.4). We give
two versions—first a direct translation of the fully corrective variant and then our improved
algorithm that leverages local search on Θ. To make it clear that we operate over the space
of measures on Θ we change notation and denote the iterate by µk instead of xk. The
most obvious challenge is that we cannot easily represent a general measure on a computer.
However, we will see that the steps of CGM can in fact be carried out on a computer in this
context. In fact, each iterate is a sparse measure µk supported on Nk points:

µk =

Nk∑
i=1

w
(k)
i δ

θ
(k)
i .

As such, we will represent µk by the pair of vectors: wk ∈ RNk and ~θk ∈ ΘNk . Indeed, the
algorithms we present can be thought of as operating on this representation directly.

Before we describe the algorithm in detail, we first explain how to linearize the objective
function and minimize the linearization. In the space of measures, linearization is most easily
understood in terms of the (one-sided) directional derivative.

In our formulation (2.4), f(µ) = `(Φµ). If we define the output as ok = Φµk, we can
compute the directional derivative of our particular choice of f at µk in the direction of the
measure s as

f ′(s;µk) = lim
t↓0

`(Φ(µk + ts))− `(Φµk)
t

= lim
t↓0

`(ok + tΦs)− `(ok)
t

= `′(Φs; ok) = 〈∇`(ok),Φs〉 .
(3.2)

Here, the inner product on the right hand side of the equation is the standard inner product
in Rd.

The second step of the CGM minimizes the linearized objective over the constraint set.
In other words, we minimize 〈∇`(ok),Φs〉 over a candidate measure s with total variation
bounded by τ . Interchanging the integral (in Φ) with the inner product, and defining F (θ) :=
〈∇`(ok), φ(θ)〉, we need to solve the optimization problem:

minimize
|s|(Θ)≤τ

∫
F (θ)ds(θ). (3.3)
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An optimal solution of (3.3) is the point-mass −τsgn(F (θ?))δθ? , where θ? ∈ arg max |F (θ)|.
This is clear, as

∫
F (θ)ds(θ) is bounded by − supθ |F (θ)|‖s‖1. This means that at each step

of the CGM we need only add a single point to the support of our approximate solution µk.
We now describe the fully-corrective variant of the CGM for sparse inverse problems

(Algorithm 2). The state of the algorithm at iteration k is an atomic measure µk supported

on a finite set ~θk with weights wk. The algorithm alternates between selecting a source to
add to the support and tuning the weights to lower the current cost. Step 4a is a finite-
dimensional convex optimization problem that we can solve with an off-the-shelf algorithm.
The solution to the finite-dimensional optimization problem may set some of wk+1 to zero,
in which case the prune subroutine removes the corresponding entries from wk+1 and ~θk+1.

Algorithm 2 Conditional gradient method for measures (CGM-M)

For k = 1 : kmax

1. Compute gradient of loss: gk = ∇`(Φµk).

2. Compute next source: θk ∈ arg max
θ∈Θ

|〈gk, φ(θ)〉|.

3. Update support: ~θk+1 ← [~θk, θk].

4. Compute weights: wk+1 ← arg min
‖wk+1‖1≤τ

` (Φµk+1) .

5. Prune support: (wk+1, ~θk+1)← prune(wk+1, ~θk+1).

We stress here that the objective in step 2 is nonlinear (and nonconvex) in the parameter
θ, but linear when considered as a functional of the measure sk.

While we can simply run for a fixed number of iterations, we may stop early using the
standard CGM bound. With a tolerance parameter ε > 0, we terminate when the conditional
gradient bound assures us that we are at most ε-suboptimal. In particular, we terminate
when

τ |〈φ(θk), gk〉|+ 〈Φµk, gk〉 < ε. (3.4)

Unfortunately, CGM-M does not perform well in practice. Not only does it converge very
slowly, but the solution it finds is often supported on an undesirably large set. As illustrated
in Figure 3.1, the performance of CGM-M is limited by the fact that it can only change the
support of the measure by adding and removing points; it cannot smoothly move Sk within
Θ. Figure 3.1 shows CGM-M applied to an image of two closely separated sources. The
first source θ1 is placed in a central position overlapping both true sources. In subsequent
iterations sources are placed too far to the right and left, away from the true sources. To
move the support of the candidate measure requires CGM-M to repeatedly add and remove
sources; it is clear that the ability to move the support smoothly within the parameter space
would resolve this issue immediately.
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Figure 3.1: The three plots above show the first three iterates of the fully corrective CGM in
a simulated superresolution imaging problem with two point sources of light. The locations
of the true point sources are indicated by green stars, and the greyscale background shows
the pixelated image. The elements of Sk for k = 1, 2, 3 are displayed by red dots.

In practice, we can speed up convergence and find significantly sparser solutions by
allowing the support to move continuously within Θ. The following algorithm, which we call
the alternating descent conditional gradient method (ADCG), exploits the differentiability
of φ to locally improve the support at each iteration.

Algorithm 3 Alternating descent conditional gradient method (ADCG)

For k = 1 : kmax

1. Compute gradient of loss: gk = ∇`(Φµk).

2. Compute next source: θk ∈ arg max
θ∈Θ

|〈φ(θ), gk〉|.

3. Update support: ~θk+1 ← [~θk, θk].

4. Coordinate descent on nonconvex objective:
Repeat:

a) Compute weights: wk+1 ← arg min
‖wk+1‖1≤τ

` (Φµk+1) .

b) Prune support: (wk+1, ~θk+1)← prune(wk+1, ~θk+1).

c) Locally improve support: ~θk+1 = local descent(wk+1, ~θk+1).

Here local descent is a subroutine that takes a measure µ with atomic representation w, ~θ
and attempts to use gradient information to reduce the function

(θ1, . . . , θm) 7→ `

(
m∑
i=1

wiφ(θi)

)
,

holding the weights fixed.
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When the number of sources is held fixed, the optimization problem

minimize `

(
m∑
i=1

wiφ(θi)

)
subject to ~θ ∈ Θm

‖w‖1 ≤ τ

(3.5)

is nonconvex. Step 4 is then block coordinate descent over w and ~θ. The algorithm as
a whole can be interpreted as alternating between performing descent on the convex (but
infinite-dimensional) problem (2.4) in step 2 and descent over the finite-dimensional (but
nonconvex) problem (3.5) in step 4. The bound (3.4) remains valid and can be used as a
termination condition. Note that while we use block coordinate descent for simplicity, other
algorithms that perform descent over w and ~θ simultaneously would also work well.

As we have previously discussed, this nonconvex local search does not change the conver-
gence guarantees of the CGM whatsoever. We will show in §3.4 that this is an immediate
consequence of the existing theory on the CGM. However, as we will show in §3.3, the
inclusion of local search dramatically improves the performance of the CGM.

Interface and implementation

Roughly speaking, running ADCG on a concrete instance of (2.4) requires subroutines for
two operations. We need algorithms to compute:

(a) φ(θ) and d
dθ
φ(θ) for θ ∈ Θ.

(b) arg max
θ∈Θ

|〈φ(θ), v〉| for arbitrary vectors v ∈ Rd.

Computing (a) is usually straightforward in applications with differentiable measurement
models. Computing (b) is not easy in general. However, there are many applications of
interest where (b) is tractable. For example, if the parameter space Θ is low-dimensional,
then the ability to compute (a) is sufficient to approximately compute (b): we can simply grid
the parameter space and begin local search using the gradient of the function θ 7→ 〈φ(θ), v〉.
Note that because of the local improvement step, ADCG works well even without exact
minimization of (b). We prove this fact about inexact minimization in §3.4.

If the parameter space is high-dimensional, however, the feasibility of computing (b) will
depend on the specific application. One example of particular interest that has been studied
in the context of the CGM is matrix completion [61, 95, 51, 124]. In this case, the (b) step
reduces to computing the leading singular vectors of a sparse matrix. We will show that
adding local improvement to the CGM accelerates its convergence on matrix completion in
the experiments.

We also note that in the special case of linear system identification, Θ is 6 dimensional,
which is just large enough such that gridding is not feasible. In this case, we show that we



CHAPTER 3. ALGORITHMS FOR SPARSE LINEAR INVERSE PROBLEMS 23

can reduce the 6-dimensional optimization problem to a 2-dimensional problem and then
again resort to gridding. We expect that in many cases of interest, such specialized solvers
can be applied to solve the selection problem (b).

3.2 Related work

There has recently been a renewed interest in the conditional gradient method as a general
purpose solver for constrained inverse problems [60, 51]. These methods are simpler to
implement than the projected or proximal gradient methods which require solving a quadratic
rather than linear optimization over the constraint set.

The idea of augmenting the classic conditional gradient method with improvement steps
is not unique to our work. Indeed, it is well known that any modification of the iterate that
decreases the objective function will not hurt theoretical convergence rates [60]. Moreover,
Rao et al [95] have proposed a version of the conditional gradient method, called CoGENT,
for atomic norm problems that takes advantage of many common structures that arise in
inverse problems. The reduction described in our theoretical analysis makes it clear that our
algorithm can be seen as an instance of CoGENT specialized to the case of measures and
differentiable measurement models.

The most similar proposals to ADCG come from the special case of matrix comple-
tion or nuclear-norm regularized problems. Several papers [124, 71, 51, 61] have proposed
algorithms based on combinations of rank-one updates and local nonconvex optimization in-
spired by the well-known heuristic of [17]. While our proposal is significantly more general,
ADCG essentially recovers these algorithms in the special case of nuclear-norm problems.

We note that in the context of inverse problems, there are a variety of algorithms pro-
posed to solve the general infinite-dimensional problem (2.4). Tang et al [113] prove that
this problem can be approximately solved by gridding the parameter space and solving the
resulting finite dimensional problem. However, these gridding approaches are not tractable
for problems with parameter spaces of even relatively modest dimension. Moreover, even
when gridding is tractable, the solutions obtained are often supported on very large sets and
heuristic post-processing is required to achieve reasonable performance in practice [113]. In
spite of these limitations, gridding is the state of the art in many application areas including
computational neuroscience [37], superresolution fluorescence microscopy [125], radar [10,
55], remote sensing [40], compressive sensing [9, 28, 33], and polynomial interpolation [96].

There have also been a handful of papers that attempt to tackle the infinite-dimensional
problem without gridding. For the special case where `(·) = ‖·‖2

2, Bredies and Pikkarainen [16]
propose an algorithm to solve the Tikhonov-regularized version of problem (2.4) that is very
similar to Algorithm 3. They propose performing a conditional gradient step to update the
support of the measure, followed by soft-thresholding to update the weights. Finally, with
the weights of the measure fixed they perform discretized gradient flow over the locations
of the point-masses. However, they do not solve the finite-dimensional convex problem at
every iteration, which means there is no guarantee that their algorithm has bounded memory



CHAPTER 3. ALGORITHMS FOR SPARSE LINEAR INVERSE PROBLEMS 24

requirements. Much more seriously, for the same reason, they are limited to one pass of gra-
dient descent in the nonconvex phase of the algorithm. In §3.3 we show that this limitation
has serious performance implications in practice.

3.3 Numerical results

In this section we apply ADCG to three of the examples in §2.2: superresolution fluores-
cence microscopy, matrix completion, and system identification. We have made a simple
implementation of ADCG publicly available on github:

https://github.com/nboyd/SparseInverseProblems.jl.

This allows the interested reader to follow along with these examples, and, hopefully, to
apply ADCG to other instances of (2.4).

For each example we briefly describe how we implement the required subroutines for
ADCG, though again the interested reader may want to consult our code for the full picture.
We then describe how ADCG compares to prior art. Finally, we show how ADCG improves
on the standard fully-corrective conditional gradient method for measures (CGM-M) and
a variant of the gradient flow algorithm (GF) proposed in [16]. While the gradient flow
algorithm proposed in [16] does not solve the finite-dimensional convex problem at each
step, our version of GF does. We feel that this is a fair comparison: intuitively, fully
solving the convex problem can only improve the performance of the GF algorithm. All
three experiments require a subroutine to solve the finite-dimensional convex optimization
problem over the weights. For this we use a simple implementation of a primal-dual interior
point method, which we include in our code package.

For each experiment we select the parameter τ by inspection. For matrix completion and
linear system ID this means using a validation set. For single molecule imaging each image
requires a different value of τ . For this problem, we run ADCG with a large value of τ
and stop when the decrease in the objective function gained by the addition of a source falls
below a threshold. This heuristic can be viewed as post-hoc selection of τ and the stopping
tolerance ε, or as a stagewise algorithm [116].

The experiments are run on a standard c4.8xlarge EC2 instance. Our naive implemen-
tations are meant to demonstrate that ADCG is easy to implement in practice and finds
high-quality solutions to (2.4). For this reason we do not include detailed timing informa-
tion.

Superresolution fluorescence microscopy

We analyze data from the Single Molecule Localization Microscopy (SMLM) challenge [102,
49]. Fluorescence microscopy is an imaging technique used in the biological sciences to
study subcellular structures in vivo. The task is to recover the 2D positions of a collection
of fluorescent proteins from images taken through an optical microscope.

https://github.com/nboyd/SparseInverseProblems.jl
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Here we compare the performance of ADCG to the gridding approach of Tang et al [113],
two algorithms from the microscopy community (quickPALM and center of Gaussians), and
also CGM and the gradient flow (GF) algorithm proposed by [16]. The gridding approach
approximately solves the continuous optimization problem (2.4) by discretizing the space Θ
into a finite grid of candidate point source locations and running an `1-regularized regression.
In practice there is typically a small cluster of nonzero weights in the neighborhood of each
true point source. With a fine grid, each of these clusters contains many nonzero weights,
yielding many false positives.

To remove these false positives, Tang et al [113] propose a heuristic post-processing step
that involves taking the center of mass of each cluster. This post-processing step is hard to
understand theoretically, and does not perform well with a high-density of fluorophores.

Implementation details

For this application, the minimization required in step 2 of ADCG is not difficult: the
parameter space is two-dimensional. Coarse gridding followed by a local optimization method
works well in theory and practice.

For local descent we use a standard constrained gradient method provided by the NLopt
library [63].

Evaluation

We measure localization accuracy by computing the F1 score, the harmonic mean of precision
and recall, at varying radii. Computing the precision and recall involves first matching
estimated point sources to true point sources—a difficult task. Fortunately, the SMLM
challenge website [49] provides a stand-alone application that we use to compute the F1

score.
We use a dataset of 12000 images that overlay to form simulated microtubules (see

Figure 3.2) available online at the SMLM challenge website [49]. There are 81049 point
sources in total, roughly evenly distributed across the images. Figure 3.2a shows a typical
image. Each image covers an area 6400nm across, meaning each pixel is roughly 100nm by
100nm.

Figure 3.3 compares the performance of ADCG, gridding, quickPALM, and center of
Gaussians (CoG) on this dataset. We match the performance of the gridding algorithm
from [113], and significantly beat both quickPALM and CoG. Our algorithm analyses all
images in well under an hour—significantly faster than the gridding approach of [113]. Note
that the gridding algorithm of [113] does not work without a post-processing step.

Matrix completion

As described in §2.2, matrix completion is the task of estimating an approximately low rank
matrix from some of its entries. We test our proposed algorithm on the Netflix Prize dataset,
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(a) (b)

Figure 3.2: The long sequence dataset contains 12000 images similar to (a). The recovered
locations for all the images are displayed in (b).
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Figure 3.3: Performance on bundled tubes: long sequence. F-scores at various radii for 6
algorithms. For reference, each image is 6400nm across, meaning each pixel has a width of
100nm. ADCG outperforms all competing methods on this dataset.
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a standard benchmark for matrix completion algorithms.

Implementation details

Although the parameter space for this example is high-dimensional we can still compute the
steepest descent step over the space of measures. We need to minimize the following over
a, b with ‖a‖2 = ‖b‖2 = 1:

〈φ(a, b), ν〉 = 〈M(abT ), ν〉 = 〈abT ,M∗(ν)〉 = aTM∗(ν)b.

In other words, we need to find the unit norm, rank one matrix with highest inner product
with the matrix M∗ν. The solution to this problem is given by the top singular vectors of
M∗ν. Computing the top singular vectors using a Lanczos method is relatively easy as the
matrix M∗ν is extremely sparse.

Our implementation of local descent takes a single step of gradient descent (on the
sphere) with line-search.

Evaluation

Our algorithm matches the state of the art for nuclear norm based approaches on the Netflix
Prize dataset. Briefly, the task here is to predict the ratings 480,189 Netflix users give to
a subset of 17,770 movies. One approach has been to phrase this as a matrix completion
problem. That is, to try to complete the 480,189 by 17,770 matrix of ratings from the
observed entries. Following [97] we subtract the mean training score from all movies and
truncate the predictions of our model to lie between 1 and 5.

Figure 3.4 shows root-mean-square error (RMSE) of our algorithm and other variants
of the CGM on the Netflix probe set. Again, ADCG outperforms all other CGM variants.
Our algorithm takes over 7 hours to achieve the best RMSE—this could be improved with
a more sophisticated implementation, or parallelization.

Comparison to prior approaches

Many researchers have proposed solving matrix completion problems or general semi-definite
programs using CGM-like algorithms; see [124, 71, 51, 61]. While ADCG applied to the ma-
trix completion problem is distinct (to the best of our knowledge) from existing algorithms, it
combines existing ideas. For instance, the idea of using the conditional gradient algorithm to
solve the constrained formulation is very well known [61]. The idea of using local search on a
low-rank factorization goes back at least to [17], and is used in many recent algorithms [124,
71].

In terms of performance, our implementation is relatively slow but gives very good vali-
dation error.
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Figure 3.4: Test RMSE on Netflix challenge dataset. ADCG significantly outperforms CGM-
M.

System identification

In this section we apply our algorithms to identifying two single-input single-output systems
from the DaISy collection [11]: the flexible robot arm dataset (ID 96.009) and the hairdryer
dataset (ID 96.006).

Implementation details

While the parameter space is 6-dimensional, which effectively precludes gridding, we can
efficiently solve the minimization problem in step (2) of the ADCG. To do this, we grid only
over r and α: the output is linear in the remaining parameters (B and x0) allowing us to
analytically solve for the optimal B and x0 as a function of r and α.

For local descent we again use a standard box-constrained gradient method provided
by the NLopt library [63].

Evaluation

Both datasets were generated by driving the system with a specific input and recording the
output. The total number of samples is 1000 in both cases. Following [105] we identify the
system using the first 300 time points and we evaluate performance by running the identified
system forward for the remaining time points and compare our predictions to the ground
truth.

We evaluate our predictions ypred using the score defined in [50]. The score is given by

score = 100

(
1− ‖ypred − y‖2

‖ymean − y‖2

)
, (3.6)
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Figure 3.5: Performance on DaISy datasets. ADCG outperforms other CGM variants and
matches the nuclear-norm based technique of [105].

where ymean is the mean of the test set y.
Figure 3.5 shows the score versus the number of sources as we run our algorithm. For

reference we display with horizontal lines the results of [50]. ADCG matches the performance
of [50] and exceeds that of all other CGM variants. Our simple implementation takes about
an hour, which compares very poorly with the spectral methods in [50] which complete in
under a minute.

3.4 Theoretical guarantees

In this section we present a two simple theoretical results. The first guarantees that we
can run our algorithm with bounded memory — though the bound is of limited use in
practice, where our algorithm (typically) terminates in far fewer than d+ 1 iterations. The
second result guarantees that the algorithm converges to an optimal point and bounds the
worst-case rate of convergence. Again, though, this rate of convergence is much slower than
the rate observed in practice. We emphasize that the main contribution of this chapter
is an algorithm that is effective in practice, and both of these guarantees are immediate
consequences of existing theory.

Bounded memory

As the CGM for measures adds one point to the support of the iterate per iteration, we
know that the cardinality of the support of µk is bounded by k. For large k, then, µk
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could have large support. The following theorem guarantees that we can run our algorithm
with bounded memory and in fact we need only store at most d + 1 points, where d is the
dimension of the measurements.

Theorem 3. ADCG may be implemented to generate iterates with cardinality of support
uniformly bounded by d+ 1.

Proof. Lemma (4) allows us to conclude that the fully-corrective step ensures that the sup-
port of the measure remains bounded by d+ 1 for all iterations.

Lemma 4. The finite-dimensional problem

minimize
‖w‖1≤τ

`(
∑
i

wiφ(θi)− y) (3.7)

has an optimal solution w? with at most d+ 1 nonzeros.

Proof. Let u? be any optimal solution to (3.7). As u? is feasible, we have that

v =
∑
i

u?iφ(θi) ∈ τconv({±φ(θi) : i = 1, . . . ,m}).

In other words, v
τ

lies in the convex hull of a set in Rd. Caratheodory’s theorem immediately
tells us that v

τ
can be represented as a convex combination of at most d + 1 points from

{±φ(θi) : i = 1, . . . ,m}. That is, there exists a w? with at most d+ 1 nonzeros such that

m∑
i=1

w?iφ(θi) = v.

This implies that w? is also optimal for (3.7).

Note that in order to find w?, we need to either use a simplex-type algorithm to solve (3.7)
or explore the optimal set using the random ray-shooting procedure as described in [108].

Convergence analysis

We now analyze the worst-case convergence rate for ADCG applied to (2.4). Note that
the discussion in the last section on atomic norms (§2.3) implies that we can bound the
convergence of ADCG by the convergence of the standard CGM applied to (2.5). With that
said, standard proofs of the convergence of the conditional gradient method (known since the
1960’s)[35, 30, 60] apply to any optimization problem of the following form in any Banach
space:

minimize
x∈S

f(x). (3.8)
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Here S is a bounded convex set, and f is a convex function. The convergence result depends
on a curvature parameter of the function f over the set S, Cf . Cf is a constant such that
the following inequality is satisfied for all x, s ∈ S and η ∈ (0, 1):

f(x+ η(s− x)) ≤ f(x) + ηf ′(s− x;x) +
Cf
2
η2.

Intuitively, Cf controls the quality of the linear approximation to f made in each iteration
of the CGM. The standard convergence result is stated below:

Theorem 5. Let Cf be the curvature parameter of the convex function f on the bounded,
convex set C. Let x1, x2, . . . be the iterates of the standard CGM applied to (3.8). Let f? be
the optimal value of (3.8). Then we have

f(xk)− f? ≤
Cf
k + 2

.

In our setting we can simply take S = {µ : ‖µ‖1 ≤ τ} and f(µ) = `(Φµ− y). The affine
invariance of the conditional gradient method implies that the curvature of f over S is equal
to the curvature of the function g(x) = `(x − y) over the set A = conv({±φ(θ) : θ ∈ Θ)}).
As noted in [60], Theorem 5 applies to any algorithm that reduces the objective value at
each iteration at least as much as the standard CGM. As ADCG falls into this category, it
also converges at the specified rate.

The theorem applies even when the linear minimization step is performed approxi-
mately [60]. That is, we allow θk to be chosen such that

|〈φ(θk), gk〉| ≤ max
θ∈Θ
|〈φ(θ), gk〉|+

ζ

k + 2
(3.9)

for some ζ ≥ 0. When inequality (3.9) holds, we say that the linear minimization problem
in iteration k is solved to precision ζ. When the linear minimization problem is solved to
precision ζ, the convergence rate above applies when multiplied by the factor (1 + ζ).

3.5 Conclusions and future work

As demonstrated in the numerical experiments of §3.3, ADCG achieves state of the art per-
formance in superresolution fluorescence microscopy, matrix completion, and system identi-
fication, without the need for heuristic post-processing steps. The addition of the nonconvex
local search step significantly improves performance relative to the standard conditional
gradient algorithm in all of the applications investigated. In some sense, we can under-
stand ADCG as a method to rigorously control local search. One could just start with a
model expansion (2.1) and perform nonconvex local search. However, this fares far worse
than ADCG in practice and has no theoretical guarantees. The ADCG framework provides
a clean way to generate a globally convergent algorithm that is practically efficient. Un-
derstanding this coupling between local search heuristics and convex optimization leads our
brief discussion of future work.
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Tighten convergence analysis for ADCG. The conditional gradient method is a robust
technique, and adding our auxiliary local search step does not worsen its theoretical conver-
gence rate. However, in practice, the difference between the ordinary conditional gradient
method, the fully corrective variants, and ADCG are striking. In many of our experiments,
ADCG outperforms the other variants by appreciable margins. Yet, all of these algorithms
share the same upper bound on their convergence rate. A very interesting direction of fu-
ture work would be to investigate if the bounds for ADCG can be tightened at all to be
more predictive of practical performance. There may be connections between our algorithm
and other alternating minimization techniques popular in matrix completion [64, 62], sparse
coding [1, 3], and phase retrieval [83], and perhaps the techniques from this area could be
applied to our setting of sparse inverse problems.

Connections to clustering algorithms. Another possible connection that could be
worth exploring is the connection between the CGM and clustering algorithms like k-means.
Theoretical bounds have been devised for initialization schemes for clustering algorithms
that resemble the first step of CGM [4, 86]. In these methods, k-means is initialized by
randomly seeking the points that are farthest from the current centers. This is akin to the
first step of CGM which seeks the model parameters that best describe the residual error.
Once a good seeding is acquired, the standard Lloyd iteration for k-means can be shown
to converge to the global optimal solution [86]. It is possible that these analyses could be
generalized to analyze our version of CGM or inspire new variants of the CGM.

Connections to cutting plane methods and semi-infinite programs. The standard
Lagrangian dual of (2.4) is a semi-infinite program (SIP), namely an optimization problem
with a finite dimensional decision variable but an infinite collection of constraints [56, 106].
One of the most popular algorithmic techniques for SIP is the cutting plane method, and
these methods qualitatively act very much like the CGM. Exploring this connection in detail
could generate variants of cutting plane methods suited for continuous constraint spaces.
Such algorithms could be valuable tools for solving semi-infinite programs that arise in
contexts disjoint from sparse inverse problems.

Other applications. We believe that our techniques are broadly applicable to other sparse
inverse problems, and hope that future work will explore the usefulness of ADCG in areas
unexplored in this thesis. To facilitate the application of ADCG to more problems, such as
those described in §2.2, we have made our code publicly available on GitHub. As described in
§3.1, implementing ADCG for a new application essentially requires only two user-specified
subroutines: one routine that evaluates the observation model and its derivatives at a spec-
ified set of weights and model parameters, and one that approximately solves the linear
minimization in step 2 of ADCG. We aim to investigate several additional applications in
the near future to test the breadth of the efficacy of ADCG.
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Chapter 4

Saturating Splines and Feature
Selection

This chapter is based on the paper:
N. Boyd, T. Hastie, S. Boyd, B. Recht, and M. Jordan. “Saturating Splines and Feature

Selection”. In: Journal of Machine Learning Research 17.178 (2017).
In this chapter we explore, in detail, a specific sparse linear inverse problem that arises in

statistics: fitting adaptive splines. We show that ADCG is a natural fit for this application.
We show a slight modification of the adaptive spline problem — namely the addition of
saturation constraints — is especially effective when fitting generalized additive models, and
can be handled by a slight modification of ADCG. As a note, in this application the measure
µ has a natural interpretation as the derivative of a non-differentiable function.

4.1 Introduction

Splines—piecewise polynomials with continuity constraints—are widely used to fit data [53,
§5.1]. One issue with piecewise polynomials is that they behave erratically beyond their
boundary knot points, and (typically) grow without bound outside of that range [53, §5.2].
This instability makes extrapolation dangerous; practitioners must take care to avoid query-
ing spline models near or outside of the range of the training data.

Smoothing spline algorithms [29, 119, 46] ameliorate this problem by fitting natural
splines, which reduce to a lower-degree polynomial beyond the boundary knots. The most
commonly used varieties of smoothing splines are cubic smoothing splines (degree-three
splines that reduce to linear outside the boundary knots) and linear smoothing splines,
which extend as constant. The saturating splines we propose are closely related to linear
smoothing splines.

Smoothing splines use an `2 or quadratic notion of complexity, and hence fit models with
a predetermined and dense set of knot points [53, §5.4]. Adaptive regression splines [79], on
the other hand, use an `1-type penalty, which can result in a sparse set of adaptively chosen
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knots. However, adaptive regression splines do not reduce to lower degree outside of the
range of their largest knots, and hence may suffer from instability.

We propose fitting adaptive regression splines with explicit constraints on the degree of
the spline outside of a certain interval. We call such splines saturating splines. While the
approach we take can be extended to fitting splines of arbitrary degree with constraints on
arbitrary derivatives, in this chapter we focus on fitting linear splines that are flat (constant)
outside the data range; we mention the extension to higher degree splines in §4.8. We show
that saturating splines inherit the knot-selection property of adaptive regression splines,
while at the same time behave like natural splines near the boundaries of the data.

We also show a very important benefit of our approach in the context of fitting generalized
additive models [52] with saturating spline coordinate functions: the saturation constraint
naturally results in variable selection. Not only do we control the complexity of each co-
ordinate function through knot selection, but with the saturation condition, no knots on a
variable means the variable is out of the model. This is not true for adaptive splines, since
the linear term is unpenalized and hence each variable would always be in the model. The
lack of feature selection can hurt interpretability and, in certain cases, generalization. The
saturation constraint we propose precludes linear functions, and in concert with the adap-
tive spline `1 penalty encourages coordinate functions to be identically zero. As a result,
generalized additive models fit with saturating spline component functions often depend on
only a few input features.

Like smoothing splines and adaptive regression splines, saturating splines arise as so-
lutions to certain natural functional regression problems. We solve the saturating spline
fitting problem by reformulating it as a convex optimization problem over a space of mea-
sures, roughly speaking, the second derivative of the fitted function. To the best of our
knowledge, this approach is novel. We then apply a variant of the classical conditional gra-
dient method [60, 14] to this problem. At each iteration of our algorithm, an atomic measure
is produced; moreover, we can uniformly bound the number of atoms, which corresponds to
the number of knot points in the spline function. (While we manipulate atomic measures, we
solve the problem over the space of all measures with finite total variation.) In contrast to
standard coordinate descent methods, in each iteration of the conditional gradient method
the weights of two knot points are adjusted. In the fully corrective step, we solve a finite-
dimensional convex optimization problem with `1 and simple linear constraints. Numerical
experiments show that the method is extremely effective in practice.

Our optimization method can exploit warm starts, i.e., it can use an initial guess for
the fitted function. This allows us to compute an entire regularization path efficiently, at
a cost typically just a small multiple of the effort to solve the problem for one value of
the regularization parameter. Because our algorithm is based on the conditional gradient
method, we can use the framework of [45] to compute a provably ε-suboptimal approximate
regularization path. When fitting generalized additive models, the regularization path has
attractive features: at critical values of the regularization parameter, new regressors are
brought into (or, occasionally, out of) the model, or new knot points are added to (or
deleted from) one of the existing coordinate functions. Thus our approach combines feature
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selection and knot point selection.

Outline

In §4.2 we introduce a univariate function fitting problem, inspired by the adaptive spline
estimation problem of [79], that includes the additional requirement that the fitted function
saturate. In §4.3 we make the connection between our function estimation problem and stan-
dard adaptive splines, and pose the saturating spline fitting problem as a convex optimization
problem over measures. In §4.4 we modify the classical conditional gradient method to solve
this optimization problem. In §4.5 we extend the optimization problem and algorithm to
fit generalized additive models to multivariate data. We illustrate the effectiveness of the
method with several examples in §4.7. We discuss generalizations to higher-degree splines in
§4.8. Finally, we discuss potential extensions and variations in §4.9. The appendix includes
implementation details and proofs.

4.2 Univariate function fitting

We wish to fit a continuous bounded function f : R → R from data (xi, yi) ∈ R × Y ,
i = 1, . . . , n, xi ∈ [0, 1]. To do this we will choose f to minimize a data mismatch or loss
function subject to a constraint that encourages regularity in f , and an additional constraint,
saturation, that we describe below.

The loss is given by

L(f) =
n∑
i=1

`(f(xi), yi),

where ` : R × Y → R is nonnegative, twice differentiable, and strictly convex in its first
argument. Typical loss functions include `(z, w) = (z−w)2/2 (standard regression, Y = R),
or `(z, w) = log(1 + exp−(zw)) (logistic regression, with Y = {−1, 1}). The loss L is a
convex functional of the function f that only depends on the values of f at the data points
xi. The smaller the loss, the better f fits the given data.

We constrain the function f to be simple by limiting the value of a nonnegative regular-
ization functional R. In this chapter, we take R to be the total variation of the derivative of
f ,

R(f) = TV(f ′),

a convex functional of f . For a twice-differentiable function f , recall that

TV(f ′) =

∫
|f ′′(x)| dx, (4.1)

i.e., the regularization is the `1 norm of the second derivative. (As we review in the following
section, the modern definition of total variation extends this equality to nondifferentiable
functions.) The total variation limit we impose on f is R(f) ≤ τ , where τ is a parameter that
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we use to trade off model fit and model regularity. This regularization constraint implicitly
constrains f to be differentiable almost everywhere, with its derivative having finite total
variation.

Our model f will be subject to one more constraint, that it saturates (outside the interval
[0, 1]), which means that it is a (possibly different) constant on the two intervals outside [0, 1]:
f(x) = f(0) for x ≤ 0, and f(x) = f(1) for x ≥ 1. In other words, f extends as a constant
outside the nominal data range of [0, 1]. In terms of the derivative, this is equivalent to the
requirement that f ′ exists and is zero outside [0, 1].

The fitting problem is then

minimize L(f)
subject to R(f) ≤ τ,

f ′(x) = 0 for x 6∈ [0, 1],
(4.2)

where τ ≥ 0 is the regularization parameter. The variable to be determined is the function f ,
which is in the vector space of continuous functions with derivatives of finite total variation.
This fitting problem is an infinite-dimensional convex optimization problem.

In applications the problem (4.2) is solved for a range of values of τ , which yields the
regularization path. The final model is selected using a hold-out set or cross-validation. For
τ = 0, f must be constant and the problem (4.2) reduces to fitting the best constant to the
data. As τ increases, f is less constrained, and our fitted model becomes more complex;
eventually we expect overfitting. For example, in the case of regression, with a loss function
that satisfies `(u, u) = 0 and data with distinct xi, the fitting function is the piecewise-linear
function that interpolates the data, for large enough τ .

4.3 Splines and functions of bounded variation

In this section we explore the connection between our fitting problem and degree-one splines,
i.e., piecewise-linear continuous functions, which have the form

f(x) = c+
K∑
i=1

wi(x− ti)+, (4.3)

where (z)+ = max{z, 0}. We assume that the ti are distinct, and refer to them as knot points
or simply knots. The scalars wi are the weights, and c is the offset. We refer to the function
x 7→ (x − ti)+ as a hinge function, so a degree-one spline is a finite linear combination of
hinge functions, plus a constant.
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Functions of bounded variation

A right-continuous function h : [0, 1]→ R is of bounded variation if and only if there exists
a signed measure µ on [0, 1] with

h(z) =

∫
1(y ≤ z) dµ(y), (4.4)

where 1(y ≤ z) = 1 for y ≤ z and 0 otherwise. The measure µ is unique; we can think
of it as the derivative of h. That is, (4.4) is essentially the second fundamental theorem of
calculus with h′ replaced by µ.

We also have TV(h) =
∫
d|µ|. (This is called the total variation of the measure µ.)

We will denote this using the notation ‖µ‖1, to emphasize the similarity with the finite-
dimensional case, or the case when h is differentiable: TV(h) = ‖h′‖1. When the measure µ
is atomic, the function h is piecewise constant with jumps at the points in the support of µ.

Splines and derivatives with bounded variation

Now suppose that f : [0, 1] → R has a right-continuous derivative of bounded variation.
From (4.4), with h = f ′, and the fundamental theorem of calculus, we have

f(x) = f(0) +

∫ x

0

f ′(z) dz = f(0) +

∫ x

0

∫
1(y ≤ z) dµ(y) dz (4.5)

= f(0) +

∫ ∫ x

0

1(y ≤ z) dz dµ(y) (4.6)

= f(0) +

∫
(x− y)+ dµ(y). (4.7)

This shows that any such function is a (possibly infinite) linear combination of hinge func-
tions, plus a constant (i.e., f(0)). In this case, the measure µ can be thought of as the second
derivative of f .

When µ is atomic and supported on a finite set, that is,

µ =
K∑
i=1

wiδti ,

f is a degree-one spline of the form (4.3), with c = f(0). So degree-one splines correspond
exactly to the case where the measure µ (roughly, the second derivative) has finite support.

We introduce the notation

fµ(x) =

∫ x

0

∫
1(t ≤ z) dµ(t) dz =

∫
(x− t)+ dµ(t) (4.8)

to denote the function derived from the measure µ. It is, roughly speaking, the double
integral of the measure µ, or the (potentially infinite) linear combination of hinge functions
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associated with the measure µ. The mapping from µ to fµ is linear, and we have TV(f ′µ) =
‖µ‖1. A simple example of fµ, its first derivative f ′µ, and its (atomic measure) second
derivative µ is shown in Figure 4.1.
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Figure 4.1: fµ and f ′µ generated by the atomic measure µ (f ′′µ). The regularization functional,
TV(f ′µ), is the sum of the absolute values of the spikes in µ. Note that the (signed) sum of
the spikes in µ is zero: that is,

∫
dµ = 0, which implies that fµ saturates.
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Fitting splines by optimizing over measures

Identifying f = c+fµ, we can solve the fitting problem (4.2) by minimizing over the bounded
measure µ on [0, 1], and the constant c. The measure µ is the second derivative of f , and
the constant c corresponds to f(0). The total variation regularization constraint TV(f ′) ≤ τ
corresponds to ‖µ‖1 ≤ τ . The saturation condition holds by construction for x < 0; to
ensure that f ′(x) = 0 for x > 1, we need

f ′(1) = f ′(0) +

∫ 1

0

dµ = 0.

In other words, saturation of f corresponds to µ having total (net) mass zero. Thus (4.2)
can be rephrased as

minimize L(Exµ+ c)
subject to ‖µ‖1 ≤ τ,∫

dµ = 0
(4.9)

over the bounded measure µ on [0, 1], and c ∈ R. Note the slight abuse of notation here: we
now (and for the remainder of the chapter) consider L as a functional on Rn. In the above,
Ex is the linear operator that maps µ to the vector (fµ(x1), . . . , fµ(xn)), given by (4.8). Ex
is clearly linear, as it is the integral of the function φ : R→ Rn:

φ(t) = ((x1 − t)+, . . . , (xn − t)+)

against µ. We will apply the conditional gradient method directly to this problem.
To gain intuition about the optimization problem (4.9), we can consider it as a infinite-

dimensional analogue of the standard lasso [115]. The lasso is the solution to the optimization
problem

minimize 1
2
‖Aw − y‖2

2

subject to ‖w‖1 ≤ τ.
(4.10)

Here w is a vector in Rd, and A ∈ R(n,d) is a matrix. Ignoring the constant term c, we see
that (4.9) looks very similar to (4.10), where Ex plays the role of A; indeed, Ex is essentially
a matrix with n rows and infinitely many columns. Our intuition from the lasso suggests
that there should be solutions of (4.9) that are sparse, which here means that µ is atomic.
In terms of fµ, sparsity means there are solutions of the original functional fitting problem
(4.2) that are degree-one splines. This is indeed the case. Theorem 6 shows that there is a
solution of (4.9) with µ atomic, supported on no more than n + 2 points; in other words,
fµ is a degree-one spline with K ≤ n + 2. Moreover, in practice the solution of (4.9) will
exhibit selection, that is, it will be supported on far fewer than n+ 2 points.

Theorem 6. Fix x1, . . . , xn ∈ [0, 1] and f : R → R with f ′ (right-continuous) of bounded
total variation, and f constant outside of [0, 1]. Then there exists a degree-one saturating
spline f̂ (with an most n+ 2 knots) that matches f on xi with TV(f̂ ′) ≤ TV(f ′).
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For the remainder of the chapter we will ignore the constant term c. It is not difficult
to adapt the algorithms we present to handle the constant term, but doing so does add
some notational complexity. It’s also possible to minimize out c, as it does not affect the
regularization term; the resulting problem is still convex in w.

4.4 The conditional gradient method for fitting

splines

In this section we outline our algorithm for solving (4.9) (and therefore also (4.2)). To
that end, we briefly review the classical conditional gradient method [60] and the measure-
theoretic version proposed in [14].

The optimization problem we need to solve, (4.9), (without the constant term c) is

minimize L(Exµ)
subject to

∫
dµ = 0,
‖µ‖1 ≤ τ.

(4.11)

As noted in the last section, (4.11) is a convex optimization problem over a space of measures.
We closely follow the approach taken in [14] and apply the conditional gradient method to
this problem directly.

The main benefit of this approach is that we can restrict our attention to atomic measures,
i.e., µ of the form

µ =
K∑
j=1

wjδtj .

Measures of this form are easily representable in a computer, by simply storing a list of
(wj, tj) pairs. Theorem 6 ensures that the number of knots we need to store is absolutely
bounded, i.e., that our algorithm runs in bounded memory. While we manipulate atomic
measures, we solve the problem (4.11) over all bounded measures.

One thing to note about finitely-supported atomic measures is that we can easily op-
timize over the weights wj with the knot locations tj fixed, since this corresponds to a
finite-dimensional convex optimization problem amenable to any standard algorithm. Our
algorithm makes use of this fact, and alternates between adding pairs of knots and opti-
mizing over the weights w at each iteration. In this latter step knots can be (and indeed
eventually must be) removed. In an additional and optional step the knot points can be
moved continuously within [0, 1], or to neighboring data points. As we saw in Chapter 2,
this step is not needed for theoretical convergence but can improve convergence and the
sparsity of the final solution in practice.
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The conditional gradient method

The conditional gradient method (CGM) solves constrained convex optimization problems
of the form

minimize f(x)
subject to x ∈ C, (4.12)

with variable x ∈ Rd. In the above, it is always assumed that the (convex) function f is
differentiable. At each iteration of the CGM we form the standard linear approximation to
the function f at the current iterate xm:

f̂(x;xm) = f(xm) + f ′(x− xm;xm).

Here f ′(d;x) is the directional derivative of the function f at x in the direction d, defined by

f ′(d;x) = lim
t↘0

f(x+ td)− f(x)

t
.

Our use of the directional derivative here may seem surprising: for differentiable functions on
Rd, f ′(d;x) is always equal to 〈∇f(x), d〉. The direct applicability of directional derivatives
to convex functionals of measures motivates us to prefer the directional derivative.

Convexity of f implies that f̂ is a lower bound on f , that is:

f̂(x;xm) ≤ f(x). (4.13)

In the next step of the CGM, we minimize this first-order approximation over the feasible
set C:

sm ∈ arg min
s∈C

f̂(s;xm) = arg min
s∈C

f ′(s;xm).

The point sm is called the conditional gradient of f . Note that sm provides a lower bound
on f(x?):

f̂(sm;xm) ≤ f(x?).

In particular, we can bound the sub-optimality of the point xm:

f(xm)− f(x?) ≤ −f ′(sm − xm;xm). (4.14)

One can show [60] that this bound decreases to zero, which means that it can be used as
a (non-heuristic) termination criterion. After determining sm, there are several options for
updating xm. In this chapter, we will use the fully-corrective variant of the CGM, which
chooses xm+1 to minimize f over the convex hull of {s1, s2, . . . , sm}. Note that this last
step may become computationally intensive as k grows, and indeed limits the applicability
of the conditional gradient method to problems where this step is computationally feasible.
One option is to remove previous conditional gradients as soon as they are not selected in
the minimization step. Caratheodory’s theorem ensures that the set of previous conditional
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Figure 4.2: An illustration of a single iteration of the conditional gradient method on the
function f(x) = x2 at the point 1

2
. The set C is the interval [−0.25, 1.25], indicated by

the solid vertical lines. The first order approximation f̂(·; 1
2
) is plotted as the dotted line

tangential to f(x) at 1
2
. The conditional gradient sm is the point −0.25.

gradients we need to track is then bounded by d+ 1. In practice, however, the algorithm is
usually terminated well before d+ 1 iterations.

Algorithm 4 Fully-corrective conditional gradient method

For m = 1, . . .

1. Linearize: f̂(s;xm)← f(xm) + f ′(s− xm;xm).

2. Minimize: sm ∈ arg mins∈C f̂(s;xm).

3. Update: xm ∈ arg minx∈conv(s1,...,sm) f(s).

Conditional gradient for measures

In this subsection, we apply the conditional gradient method to the infinite-dimensional
problem (4.11), which we repeat here:

minimize L(Exµ)
subject to

∫
dµ = 0,
‖µ‖1 ≤ τ.

(4.15)

First we’ll show that the conditional gradient, i.e., the measure sm, can be chosen to be
supported on exactly two points, and is computable in time linear in n. The directional
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derivative of the objective function in the direction of the measure s at the point µ is given
by

lim
t↘0

L(Ex(µ+ ts))− L(Exµ)

t

= lim
t↘0

L(Exµ+ tExs)− L(Exµ)

t

= L′(Exs;Exµ)

= 〈∇L(Exµ), Exs〉Rn .

We can then interchange the inner-product in 〈∇L(Exµ), Exs〉 with the integral in Exs =∫
φ(t) ds(t):

〈∇L(Exµ), Exs〉 =

∫
〈∇L(Exµ), φ(t)〉 ds(t). (4.16)

Let g = ∇L(Exµ) ∈ Rn. Note that in the case `(x, y) = (x−y)2

2
, g is simply the residual

Exµ − y and 〈g, φ(t)〉 is the correlation between the residual and a single hinge function
located at t. A conditional gradient is any solution to the following optimization problem

minimize
∫
〈g, φ(t)〉 ds(t)

subject to
∫
ds = 0,
‖s‖1 ≤ τ.

(4.17)

Without the integral constraint, we would expect there to be a solution to (4.17) that is
a single point-mass: the objective function is the integral of a scalar-valued function against
a bounded measure. We’ll show that there is always a solution to (4.17) that is supported
on exactly two points. Furthermore, we’ll show that those two points can be computed in
time linear in n.

First we’ll construct a particular feasible point for (4.17) and then we’ll show that it
achieves the optimal value. Let

t+ ∈ arg min
t
〈g, φ(t)〉, t− ∈ arg min

t
−〈g, φ(t)〉.

Define
s? =

τ

2
δt+ −

τ

2
δt− .

The objective value achieved by s? is

o? =
τ

2
(〈g, φ(t+)〉 − 〈g, φ(t−)〉) .

We’ll show that either any measure s that is feasible for (4.17) has objective value bounded
below by o? or µ is optimal for (4.11). Let s be any feasible measure for (4.17). Decompose
s into the difference of two mutually singular non-negative measures: s = s+ − s−. Then as
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s is feasible we have ‖s+‖1 = ‖s−‖1 ≤ τ
2
. The objective value achieved by s can be bounded

below as follows∫
〈g, φ(t)〉ds(t) =

∫
〈g, φ(t)〉ds+(t) +

∫
−〈g, φ(t)〉ds−(t)

≥ ‖s+‖1

(
min
t
〈g, φ(t)〉

)
+ ‖s−‖1

(
min
t
−〈g, φ(t)〉

)
≥ ‖s+‖1

(
min
t
〈g, φ(t)〉+ min

t
−〈g, φ(t)〉

)
.

Suppose (mint〈g, φ(t)〉+ mint−〈g, φ(t)〉) ≥ 0. Then the argument above implies s? = 0 is a
conditional gradient for (4.11), and thus (3.4) implies µ is optimal. Otherwise we have(

min
t
〈g, φ(t)〉+ min

t
−〈g, φ(t)〉

)
< 0,

which implies

‖s+‖1

(
min
t
〈g, φ(t)〉+ min

t
−〈g, φ(t)〉

)
≥ τ

2

(
min
t
〈g, φ(t)〉+ min

t
−〈g, φ(t)〉

)
= o?.

This proves the assertion.
Note that finding t− and t+ involves two separate optimization problems over [0, 1] instead

of one over [0, 1]× [0, 1]. These problems are readily solved by gridding, though in this case
they can be solved exactly in time linear in n if we have access to a sorted vector of the data
points xi. To see this, we expand the objective function for t+ above,

t+ = arg min
0≤t≤1

n∑
i=1

gi(xi − t)+ = arg min
t

∑
i:xi≥t

gi(xi − t).

If xi are sorted, we can compute the minimizer between each pair of consecutive data points
exactly, since this is simply computing the minimizer of a linear functional over an interval.
Thus in a single pass over the data we can compute the global minimizer exactly.

Immediately after computing t− and t+ we can use (3.4) to bound the suboptimality of
µ by

L(Exµ)− L(Exµ?) ≤ −
∫
〈g, φ(t)〉d(s? − µ)(t).

With this choice of conditional gradient, the fully-corrective step is a finite-dimensional
convex problem. Fixing the knot locations encountered as conditional gradients so far,
t1, . . . , t2k, we can do at least as well as the fully-corrective algorithm by solving the following
optimization problem:

minimize L(Exµ)
subject to

∫
dµ = 0,
‖µ‖1 ≤ τ,
supp(µ) ⊂ {t1, . . . , t2k}.

(4.18)
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This is equivalent to the following optimization problem in R2k:

minimize L(
∑

j wjExδtj)

subject to 1Tw = 0,
‖w‖1 ≤ τ.

(4.19)

We can solve this using any of a number of existing algorithms [15, 118]. In our implemen-
tation we use the conditional gradient method with line-search for simplicity.

By warm starting with an increasing sequence of τ ’s, we can efficiently compute an
approximate regularization path. Indeed we can even provide a provably ε-suboptimal path
using the approach of [45].

Convergence

As in the case of ADCG [14] convergence follows immediately from the conditional gradient
method proof in general Banach spaces [35, 30, 60]. The convergence of the conditional
gradient method depends on a curvature parameter Cf . Cf is a constant such that the
following inequality is satisfied for all x, s ∈ S and η ∈ (0, 1):

f(x+ η(s− x)) ≤ f(x) + ηf ′(s− x;x) +
Cf
2
η2.

For our purposes f : Rn → R is simply L and S = {Exµ : ‖µ‖1 ≤ τ,
∫
dµ = 0}. A simple

sufficient condition for Cf to be finite is that ` is differentiable with Lipschitz gradient. If
Cf is finite, the conditional gradient method converges (in terms of function value) at a rate
of at least 1/m where m is the iteration counter.

4.5 Generalized additive models

One natural application of univariate splines is fitting generalized additive models [52] to
multivariate data: (xi, yi) ∈ RD × Y , i = 1, . . . , n. That is, fitting a function of the form

f(x) =
D∑
d=1

fd(x[d])

where each fd is a simple function from R to R (here x[d] is the d-th coordinate of the vector
x). We can mimic our approach in the scalar case with the following optimization problem:

minimize L(f)
subject to

∑
dR(fd) ≤ τ,

f ′d(x) = 0 ∀x 6∈ [0, 1], d.
(4.20)

Here R is the same regularizer used in the scalar case, namely

R(g) = TV(g′) ' ‖g′′‖1.
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As in the scalar case, one can show that there is always an optimal f with each coordinate
function fd a degree-one saturating spline.

This allows us to rephrase (4.20) as an optimization problem over measures. The only
change from the scalar case is that the measure is over the set {1, . . . , D}× [0, 1]—each knot
is now attached to a particular coordinate. In other words, we search for a function of the
following form:

fµ(x) =

∫
(x[d]− t)+dµ(d, t).

We again have equality between the `1 norm of µ and the regularization term:∑
d

R((fµ)d) = ‖µ‖1.

The analogue of (4.11) is then

minimize L(Exµ)

subject to
∫

1(d = d̂) dµ(d, t) = 0, ∀d̂
‖µ‖1 ≤ τ.

(4.21)

The conditional gradient algorithm from the scalar case generalizes immediately to fitting
generalized additive models—the only difference is that we now need to find a pair of knots
for the same coordinate. This involves solving d pairs of nonconvex optimization problems
over [0, 1]—again this can be done by gridding or by sorting the training data.

Saturating splines gain an additional advantage over standard adaptive splines when
fitting generalized additive models. The addition of the saturation constraint (that fd be
constant outside of [0, 1]) naturally leads to variable selection when fitting generalized addi-
tive models. What we mean by variable selection is that the functions fd are often exactly 0.
This is because the saturation constraint means that linear coordinate functions no longer
escape the regularization (indeed, they are impossible). This is very different from the stan-
dard adaptive spline setup without the saturation constraint. In that case, linear functions,
i.e., fd(x[d]) = wx[d] completely escape the regularization, and as a result are essentially
always included in the model. Linear functions are not free with saturation constraints (in
fact, outside of the function 0, they are not feasible). When we solve (4.21) we simultaneously
fit nonlinear coordinate functions while doing variable selection.

4.6 Prior and related work

Smoothing splines also have an interpretation as the solution of an infinite-dimensional
optimization problem [53, §5.4]. In fact, (degree-one) smoothing splines solve

minimize L(f)

subject to R̂(f) ≤ τ,
(4.22)
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where

R̂(f) =

∫
f ′(x)2 dx.

The solution to (4.22) is also a degree-one natural spline that saturates outside of [0, 1].
However, the solutions to (4.22) and (4.2) are very different. Roughly, (4.22) is analogous
to ridge regression, while (4.2) is analogous to the lasso. That is, (4.22) fits functions with
as many knots as datapoints, while (4.2) often fits splines with very few knots.

Another type of spline, that is adaptive but does not saturate, are adaptive regression
splines [79]. These splines also arise as solutions to a functional regression problem:

minimize L(f)

subject to R̂(f) ≤ τ,
(4.23)

where
R̂(f) = TV (f ′(x)).

Note that this is (4.2) without the saturation constraint. Algorithms for solving (4.23) (for
degree-one splines) are based on an extension of Theorem 6, that shows there is a solution
to (4.23) which is actually supported on the data points xi. Hence a lasso algorithm can be
used to find the solution. This also suggests a very simple method to solve our problem (4.9):
we fix the n knot points to be the values of the data xi, and solve the finite-dimensional
convex optimization problem to find the weights. While simple coordinate-descent methods
like GLMNet [43] will not immediately work because of the saturation constraint, they could
be modified to handle the constraint.

This method does work, but can be much slower than ours since in practice the number
of knots is typically much smaller than n for useful values of the regularization parameter τ ,
and the finite-dimensional problem with n basis functions is very poorly conditioned. With
that said, the algorithm we propose—for the piecewise linear case—can be interpreted as
a forward active set method for the finite dimensional problem, where we avoid explicitly
evaluating all basis functions. One advantage of our measure-theoretic approach is that it
immediately generalizes to higher-degree splines, where the support of µ need not be on
data points, as we will see in §4.9. In this case (4.9) is truly infinite-dimensional, yet our
algorithm can still be directly applied.

Trend filtering is a nonparametric function estimation technique, first introduced by [67],
that is very similar to adaptive splines. Indeed, as discussed by [114], the trend filter-
ing estimate in the constant or piecewise-linear case is exactly the same as the adaptive
spline estimate. Trend filtering is increasingly popular as it admits extremely efficient, ro-
bust algorithms [114, 94]. Indeed, some of these algorithms (especially those adapted to fit
GAMs, [89]) may be adapted to efficiently fit saturating trend filter estimates, which would
benefit from the feature selection properties of saturating splines and the computational
efficiency of trend filtering.
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There are a number of methods for fitting generalized additive models with spline com-
ponent functions. One approach [75] is to use the group-lasso version of (4.6):

R(f) =
∑
d

√∫
f ′d(x)2 dx.

Extending this idea, [24] use an overlap group-lasso that facilitates selection between zero,
linear and nonlinear terms. The differences between these approaches and ours are analogous
to the differences between the standard group-lasso and the lasso. While both do feature
selection, the penalty functional (4.6) does not do knot-selection within each coordinate
function.

One very similar approach to fitting splines that does not require knot selection (but does
not incorporate saturation) is discussed by [100].

4.7 Examples

In all examples we affinely preprocess the data so that all training features lie in [0, 1], and
apply the same transformation to the test features (which thus may have values outside of
[0, 1]). All plots are in terms of the standardized features. For the bone density and abalone
data sets we select τ to minimize error on the validation sets. For the Spam and ALS data
sets we use cross-validation to estimate τ. We hold out a random subset of size 100 from
the training set and train on the remaining data. For each random validation/train split we
estimate τ to minimize hold-out error and take our final estimate of τ as the mean over 50
trials.
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Figure 4.3: Saturating splines fit to bone density data (shown as scattered points) for 3 values
of the regularization parameter τ . Left: τ = 0.31; Middle: τ = 3.34; Right: τ = 35.45.

Bone density

We start with a simple univariate data set from [53, §5.4]. The response variable for this
data set is the change in spinal bone density between two doctor visits for female adolescents
as a function of age. There are 259 data points, of which we hold out 120 for validation,
leaving 139 data points to which we fit a saturating spine. We start with the square loss.

The results are shown in figure 4.3, for three values of the regularization parameter τ .
The scattered points are the training data, the solid line is the saturating spline fit by
our algorithm. The figure demonstrates the clear link between τ and the complexity of
the optimized spline. Out-of-sample validation suggests setting τ ' 3.34, which achieves a
validation RMSE of 0.036.

To demonstrate that our proposed method works with more general loss functions, we
add 30 simulated outliers to the training set and fit with the pseudo-Huber loss [22], a smooth
approximation to the Huber loss function given by

lδ(u) = δ

(√
1 +

u2

δ
− 1

)
,

where δ > 0 is a parameter that interpolates between the absolute value loss and the squared
loss. For our experiment we take δ = 0.0015; roughly speaking, the transition between square
and linear loss occurs around

√
δ = 0.039. The results are shown in figure 4.4. These plots

demonstrate that our algorithm can fit losses other than the square loss, and confirms that
the pseudo-Huber loss is far more robust to outliers than the basic square loss function.
Indeed, on the validation set the least-squares fit achieves a minimum RMSE of 0.096, while
the pseudo-Huber fit achieves 0.038, only slightly worse than the fit obtained before the
outliers were added to the training data. While this one-dimensional problem is very easy,
it shows one advantage of the adaptive spline penalty over smoothing splines: the optimal
model has only 5 knot points.
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Figure 4.4: Saturating splines fit to bone density data (shown as scattered points) with
simulated outliers for square loss function (left) and pseudo-Huber loss function (right),
each for the value of τ that minimizes RMSE on the test set.
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Abalone

We fit a generalized additive model with saturating spline coordinate functions to the
Abalone data set from the UCI Machine Learning Repository [74]. The data consists of
4177 observations of 8 features of abalone along with the target variable, the age of the
abalone. We hold out 400 data points as a validation set, leaving 3777 data points to fit the
model. The first feature (labeled sex) has three values: Male, Female, and Juvenile, which
are coded with values 0, 1, 2; the other 7 are (directly) real numbers. The task is to estimate
the age of the abalone from the features.

Cross-validation suggests we choose τ ' 200, which achieves a validation set RMSE of
2.131. Because the number of features is low, we can plot the entire generalized additive
model. Each plot shows one coordinate function fd for d = 1, . . . , 8 as a function of the
standardized feature in [0, 1]. The coordinate functions are shown for three values of τ , with
the middle one corresponding to the value that minimizes cross-validation RMSE. When a
coordinate function is zero, which means that the feature is not used in the model, it is shown
in blue. We can see that in the case of strong regularization (τ = 20), several coordinates
are not used; for the best model (τ = 200), all features are used, with a few having only a
small effect. It is interesting to see how the sex factors into the optimal model. It is neutral
on Male or Female, but subtracts a small fixed amount from its age prediction for a Juvenile
abalone.

This data set is small enough that we can compare against standard adaptive splines
fit using a coarse grid of [0, 1]. For this experiment, we fit a GAM with standard adaptive
spline component functions using GLMNET [43]. The standard adaptive GAM fit, which
does no variable selection, achieves a validation set RMSE of 2.137, not significantly worse
than the saturating spline model. Our algorithm, however, selects many fewer knot points.
The increased number of knots when fitting with GLMNET is perhaps due to the poor
conditioning of the gridded problem.
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Figure 4.5: Coordinate functions for saturating spline generalized additive models fit to
Abalone data for three values of the regularization parameter τ .
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Figure 4.6: Validation error for saturating spline generalized additive model fit to Spam data
set versus regularization parameter τ .

Spam

We consider the problem of classifying email into spam/not spam, with a data set taken from
ESL [53]. The data set consists of 57 word-frequency features from 4601 email messages,
along with their labels as spam or not spam. Following the approach in ESL [53] we log-
transform the features and use the standard train/validation split, with a training set of size
3065, and test set with 1536 samples. We fit a saturating spline generalized additive model
with standard logistic loss.

Figure 4.6 shows the validation error versus the regularization parameter τ . Cross-
validation suggests the choice τ ' 1100. To show the benefit of nonlinear coordinate
functions, we also include the best validation error achieved using a linear model (fit us-
ing GLMNet [43]).

With regularization parameter τ = 500, the model selects 55 of the 57 features. We note
that our saturating spline generalized additive model modestly outperforms many methods
from ESL [53]; for example, smoothing splines yield 5.3% error, while our model has an error
rate well below 5%. Figure 4.7 shows (some of) the coordinate functions for the model with
τ = 500. The coordinate functions use very few knots, making them readily interpretable.

For comparison, we fit a GAM with standard adaptive spline coordinate functions. To do
so, we grid each dimension with 20 knots and solve the resulting finite-dimensional problem
with GLMNET [43]. Note that adaptive splines do not penalize linear functions, so there is
no feature selection. Adaptive splines achieve a minimum error of 4.8%, significantly worse
than saturating splines.
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Figure 4.7: 16 coordinate functions for τ = 500, labeled with the corresponding feature
name.
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ALS

Using this data set we try to predict the rate of progression of ALS (amyotrophic lateral
sclerosis) in medical patients, as measured by the rate of change in their functional rating
score, a measurement of functional impairment. The data set is split into a training set of
1197 examples and a validation set of 625 additional patients. Each datapoint has dimension
369. We fit a generalized additive model with saturating spline component functions to the
data using a least-squares objective function. Following [36, §17.2], we measure performance
using mean-squared error.

We estimate the optimal value of τ using cross validation with a hold-out size of 100
examples and 50 samples; this procedure suggests τ = 13. Figure 4.8 shows the validation
error versus the regularization parameter τ ; the value of τ selected by cross validation achives
low error. On the same plot, we also show the results from [36] using boosted regression trees
and random forests. The optimal saturating spline GAM model selects only 50 out of the
369 features, in contrast to boosted regression trees, which use 267. The saturating spline
GAM model performs comparably to boosted regression trees and random forests. This is
surprising as the saturating spline GAM has no interaction terms. It also uses substantially
fewer features, further improving interpretability.

Again we fit a GAM with standard adaptive spline coordinate functions (using GLMNET)
to show the advantage of saturation. The standard adaptive spline fit achieves an MSE
of 0.547, substantially worse than any other model. We speculate that this is because the
unpenalized linear functions lead to immediate overfitting. Indeed, removing the unpenalized
linear functions and fitting a model with only hinges gives very similar performance to the
saturating spline fit, suggesting that the main advantage of saturation for this application is
the removal of the unpenalized linear functions.

Practical advantages of saturating splines

These experiments show that saturating splines achieve competitive performance on small
classification and regression data sets. In addition, the experiments demonstrate that sat-
urating splines exhibit both knot selection and feature selection—in the context of fitting
GAMs. While it is no surprise that saturating splines select fewer knots than smoothing
splines (which choose a fully-dense set of knots), it is somewhat surprising that our algorithm
selects fewer knots than even adaptive splines fit with GLMNET. Finally, the Spam and ALS
data sets demonstrate a major advantage of saturating splines over adaptive splines: they
simultaneously perform non-linear coordinate function fitting and feature selection. This
aids in generalization performance and interpretability. In particular, for the ALS data set
saturating spline GAMs achieve half the test MSE of adaptive spline GAMs by selecting
only 50 of 369 available features.
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Figure 4.8: Validation MSE on ALS data set versus regularization parameter τ .

4.8 Higher-degree splines

In the majority of this chapter we focused on the functional regression problem (4.2), with
a total variation constraint on the first derivative and a saturation constraint on the zeroth
derivative (the function itself). In this section, we consider constraints on higher order
derivatives, which lead to solutions that are splines of higher degrees.

minimize L(f)
subject to TV(f (k)) ≤ τ,

f (k−j)(x) = 0, ∀x 6∈ [0, 1].
(4.24)

We consider the family of nonparametric function estimation problems indexed by 0 ≤
j ≤ k. This is the analogue of the functional regression problem (4.2) with a total variation
constraint on the k-th derivative and a saturation constraint on the (k − j)-th derivative.
The saturating spline case from the rest the chapter is the special case of (4.24) with k = 1,
j = 0. Widely used cubic natural splines correspond to k = 3, j = 1. Note that unlike
natural splines, which are only defined for some values of j and k, there are no constraints
on j and k.

We now show that higher-degree saturating splines solve (4.24) in general. As f (k) is of
bounded TV, there exists a measure µ s.t. f (k)(x) =

∫
1(t ≤ x) dµ(t). Then we have
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f (k−j)(x) =

∫
. . .

∫
f (k)(x)dx . . . dx

=

∫
. . .

∫ ∫
1(t ≤ x) dµ(t)dx . . . dx

= j!

∫
(x− t)j+ dµ(t) +

j−1∑
l=0

wlx
l

for some wl. In the above, all iterated integrals take place j times.
Note that the constraint that f (k−j)(x) = 0 for all x < 0 implies that the polynomial

term,
∑j−1

l=0 wlx
l is identically zero. So, we have

f (k−j)(x) = j!

∫
(x− t)j+ dµ(t).

For x > 1, we can remove the nonlinearity, that is, for x > 1, f (k−j)(x) is simply the integral
of a polynomial in x. We can pull terms involving x out of the integral to get a polynomial
in x whose coefficients are nonzero multiples of the first j moments of µ:

f (k−j)(x) = j!

j∑
l=0

(
j

l

)
xj−k

∫
(−t)k dµ(t).

Again, we note that as this polynomial is identically zero for infinitely many points, all
of the coefficients must be zero. In terms of the measure µ, this means:

∫
tl dµ(t) = 0 for l = 0, . . . , j.

This shows that the constraint that the (k − j)-th derivative of f saturate translates to
constraints on all moments of µ up to the j-th moment.

While the conditional gradient step becomes more complex with the addition of more
moment constraints, the approach taken in this chapter can still be applied to (4.24) as long
as j is fairly small—the conditional gradient step for (4.24) involves a nonconvex optimization
problem over [0, 1]j+2. This is because we need at least (j + 2) point-masses to satisfy the
moment constraints. So, fitting quadratic splines that saturate to linear is very easy—in fact
the code to do so is essentially identical to that for fitting piecewise linear saturating splines
splines—but fitting quadratic splines that saturate to constant is slightly more difficult due
to the additional linear constraint on the measure µ. Unfortunately for larger values of j
and k, we can no longer hope to find the conditional gradient analytically and must resort
to recursive gridding or other global optimization algorithms to find the locations of the new
knots.
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Figure 4.9: The top two plots show conditional gradients for k = 2 with j = 0 and j = 1
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4.9 Variations and extensions

While saturation is often a natural prior, the approach we take in this chapter can also be
applied to other (convex) variations on (4.9). For example, we could add the constraint that
the fitted function is monotone nondecreasing, or takes values in a given interval.

A simple algorithmic extension would be to incorporate nonconvex optimization in the
spirit of [14]. At each iteration we adjust the weights of the atomic measure (w), but we
could also adjust the knot locations (t). The objective in (4.19) is nonconvex in ti, but
we can still attempt to find a local minimum. As long as we do not increase the objective
function the algorithm is still guaranteed to converge [14]. In the case of degree one splines,
we can use the fact that the knot points can, without loss of generality, be chosen to be on
the data points to make discrete adjustments to the knot locations.

To fit vector-valued functions, for example in multiclass classification, we would need to
extend (4.9) to use vector-valued measures. This is the natural measure-theoretic analogue
to the group-lasso.

In multivariate fitting problems with significant interactions between features generalized
additive models may underfit. One possible solution is to use single-layer neural networks:
i.e., learn functions of the form

x 7→
K∑
i=1

wi(v
T
i x− ti)+.

In the above, vi are constrained to lie in the unit ball. Unfortunately, the conditional gradient
step for networks of this form is NP-hard [6]. In many practical applications, however, we
might expect that the degree of the interaction is bounded. That is, each vi has bounded
cardinality. If we assume ‖vi‖0 ≤ 2, i.e., we only fit pairwise interactions, we can still apply
the conditional gradient method. In this case, the fitting function is a sum of functions of
pairs of the variables, formed from the basis elements

((cos θ)xp + (sin θ)xq − t)+,

with (continuous) parameters θ and t and (index) parameters p and q (i.e., v = (cos θ)ep +
(sin θ)eq). (This is practical only if d is small enough.) Such functions capture nonlinear
relationships between (pairs of) variables.

4.10 Conclusion

In this chapter we propose a modification of the adaptive spline regression model—namely
saturation constraints. We show that saturating splines inherit knot-selection from adaptive
splines, and have a very important quality in the context of generalized additive models:
feature selection. This allows saturating spline generalized additive models to remain inter-
pretable and (crucially) avoid overfitting when applied to multivariate data. We also propose
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a simple, effective algorithm based on the standard conditional gradient method for solving
the saturating spline estimation problem with arbitrary convex losses. Finally, we apply our
algorithm to several data sets, demonstrating the simplicity of the resulting models.

Implementation details

We provide a simple, unoptimized implementation in the Rust language. The runtime of our
algorithm is dominated by the fully-corrective step, that is, solving the finite-dimensional
convex optimization problem (4.19). We solve (4.19) using a proximal Newton method and
the standard conditional gradient method with exact linesearch. To be precise, at each
iteration, we form the second-order approximation to the objective function

f(w) ' C + (w − ŵ)T∇wf(ŵ) +
1

2
(w − ŵ)T∇2f(ŵ)(w − ŵ)

which we then minimize (over the constraint set) using the standard conditional gradient
method with (exact) linesearch. Note that this is a Newton step with fixed step-length of 1:
as in GLMNET [43], we omit a line search in the interest of speed.

We chose to use a proximal Newton method because of its relative simplicity; other stan-
dard convex optimization algorithms may give much better practical performance, especially
when the number of data points, n, is extremely large.

Proof of theorem 1

Theorem 6. Fix x1, . . . , xn ∈ [0, 1] and f : R → R with f ′ (right-continuous) of bounded
total variation, and f constant outside of [0, 1]. Then there exists a degree-one saturating
spline f̂ that matches f on xi with TV(f̂ ′) ≤ TV(f ′).

Proof. Without loss of generality, we will assume f(0) = 0. Let τ = TV(f ′). As f ′ has
bounded total variation, there exists a measure µ on [0, 1] such that f(x) = fµ:

f(x) =

∫
(x− t)+ dµ(t).

That is, f is a spline with infinitely many knots. The idea is to use Caratheodory’s
theorem for convex hulls to see that, as we only care about µ in terms of its action on a finite
number of functions (basically, we only care about the values of f at xi), we can replace µ
with a measure supported on finitely many points.

To make this idea rigorous, note that the vector

v = (f(x1), . . . , f(xn), 0) =

∫
((x1 − t)+, . . . , (xn − t)+, 1) dµ(t)
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must lie in convex hull of the (convex) set

C = {±(τ(x1 − t)+, . . . , τ(xn − t)+, τ) : t ∈ [0, 1]} ⊂ Rn+1

as ‖µ‖1 = τ . Caratheodory’s theorem for convex hulls ensures us that v can be represented
as a convex combination of at most n + 2 points from C. Letting these n + 2 points be
represented by their indicies, t1, . . . , tn+2, and their weights α1, . . . , αn+2 we define wj = αjτ
to obtain:

f(xi) =
∑
j

wj(xi − tj)+ = fµ(xi)∑
j

wj = 0.

Here µ =
∑

j wjδtj . As
∑

j |wj| = τ , we have TV(f ′µ) = ‖µ‖1 = τ .
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Chapter 5

DeepLoco

In this chapter we revisit the single molecule localization microscopy inverse problem first
described in Chapter 2. While ADCG performs well on this problem — in fact, it won the
2016 SMLM 2D high-density localization challenge — we were interested in a completely new
way to solve the SMLM inverse problem: posing it as a function approximation problem.
Somewhat to our surprise, we show that not only is it possible to directly approximate an
inverse function for the SMLM problem but that the resulting function outperforms ADCG:
the learned function is orders of magnitude faster than applying ADCG to the maximum-
likelihood problem, and it achieves even better accuracy. Once again we see that considering
sets of objects as measures allows us to apply (relatively) standard techniques. In this
context, however, instead of solving an optimization problem with a measure-valued decision
variable, we learn a neural network with a measure as output. We show that embedding such
measures into a reproducing kernel Hilbert space allows us to apply a natural loss function
to train a neural network to output sets of objects.

5.1 Introduction

Visualizing microscopic biological processes is crucial to understanding their function; optical
microscopy has been a major tool of biological investigation for over a hundred years. Over
the past decade, fundamental physical limits in the resolution of classical microscopy systems
have been surmounted by superresolution microscopy techniques [101, 103], enabling the
visualization of cellular structures far smaller than before. 3D single-molecule localization
microscopy (SMLM) localizes individual fluorophores in 3D space in order to generate an
image [59, 32] or facilitate analysis of fluorophore locations. However, these techniques come
at a computational cost, requiring advanced algorithms to perform the reconstruction.

While the ultimate goal of most SMLM experiments is to generate high-resolution images,
the process involves several intermediate steps with different products. A SMLM experiment
proceeds in four stages. First, fluorophores, each a few nanometers in size, are attached to
the sample and then stimulated to stochastically fluoresce. Second, a sequence of frames are
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taken using an optical microscope. Due to the stochastic stimulation, only a small subset of
fluorophores are active in each frame. In the third stage, each frame is analyzed to determine
the location of each fluorophore active in the frame. (A more sophisticated method processes
multiple frames together.) Finally the collection of all locations from all frames is analyzed
directly, or used to render high-resolution image in two or three dimensions.

The algorithms we develop in this chapter address the third step of a SMLM experiment,
analyzing a single frame to produce a short list of locations of the fluorophores active in the
frame. While the aim of most SMLM experiments is to produce an image, we will refer to
the task of localizing the fluorophores in a single frame as the SMLM inverse problem.

The localization microscopy community has yet to agree on a universal metric by which
to measure performance [102]. Several proposed quality metrics operate on the estimated
locations and number of fluorophores directly (such as the Jaccard index at a particular
radius), while others apply to the final product of a rendered, high-resolution image (e.g.,
PSNR). In this chapter we propose, and directly optimize, a new kind of metric: the mean
squared error between an infinite-resolution image generated from the estimated fluorophores
and the image generated by the ground truth fluorophores. While this metric is an image-
based distance, it operates directly on sets of fluorophores.

Our approach to the SMLM inverse problem is to harness the availability of fast, accurate
forward-model and noise simulators to train a neural network that maps a single frame to a
list of localizations. We do this by attempting to minimize expected loss on simulated data.
In the language of statistics, we are attempting to approximate the Bayes’ estimator with
a neural network. Compared to traditional maximum-likelihood algorithms, our method is
easier to calibrate, orders of magnitude faster (once trained), works with a wider variety of
noise and forward models, and achieves equal performance on several 2D and 3D datasets.

Our method requires an accurate simulator. Unlike traditional maximum-likelihood/convex
optimization based approaches, which make strong assumptions about the forward and noise
models (specifically that the log-likelihood is concave and that the forward model is linear),
our method can be applied to problems with arbitrary noise statistics, aberrations, and non-
linear forward models. Furthermore, we do not require a functional form for the forward
simulator, which allows us to handle non-deterministic forward models that take into account
aberrations such as dipole effects [32] and, perhaps more importantly, allows us to generate
training data directly from a few Z-stacks.

We list three possible disadvantages to our approach. The first is that training a neural
network is, at the present time, difficult: unlike convex optimization, there are a plethora
of hyperparamters and training usually requires a human in the loop. The second disad-
vantage is that the method requires an accurate end-to-end generative model that includes
the variations and aberrations that will be encountered in the real experimental setup —
though arguably this is advantageous: maximum-likelihood approaches are unable to take
advantage of this kind of prior knowledge. As we describe in §5.5, the generative model we
use is extremely simple and requires only a single Z-stack of experimental data.

Finally, the third disadvantage is common to all applications of neural networks: there
is, at present, essentially no theoretical understanding or performance guarantees. For ex-
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ample, training could, in principle, fail for a new experimental setup. Additionally, any
given reconstruction could fail. While this is, indeed, a potential shortcoming, experimental
evidence suggests that our method is (in practice) at least as reliable as convex methods.
Furthermore, all theoretical performance guarantees for convex optimization/maximum like-
lihood based methods rely on very strong assumptions about the data generation process.
We remind the reader that if these assumptions are violated (and they often are, in practice)
the conclusions of the theory do not apply. That said, maximum-likelihood based approaches
are used extensively in applications where the theoretical assumptions are violated and have
a very long history of reliability.

The chapter is organized as follows. First, §5.2 introduces common notation. In §5.3
and §5.4 we describe two bodies of related work, provide background material for our ap-
proach, and put our method in context. In §5.5 we give details on our approach, and in §5.6
we describe our experimental setup and results. Finally in §5.7 we describe several possible
extensions of our method; some simple, others speculative.

While preparing this manuscript, we discovered another chapter that applies deep learn-
ing techniques to STORM microscopy [82]. The major difference between our approaches
is that while our algorithm returns a set of localizations, DeepStorm returns a single grid-
ded image. This choice limits the approach to 2D (it’s unclear that dense reconstruction
could be extended to 3D without, at the very least, a huge increase in computation time),
limits rendering to a single scale, and precludes any downstream analysis of the fluorophore
locations [25, 84, 31, 73]. Furthermore, the use of an `1 penalty to encourage sparsity in
the reconstructed image introduces an additional parameter that must be tuned and pre-
vents interpretation of the algorithm as an approximation of the Bayes’ estimator. With
that said, there are some interesting similarities between the approaches: the loss function
is essentially a gridded version of our loss function, and both algorithms are substantially
faster than existing algorithms. Unfortunately we are unable to directly compare the two
approaches as the code for [82] is not yet available.

5.2 Notation and loss functional

One issue with SMLM as an inverse problem is the choice of loss function. In many inverse
problems the object to be estimated is an element of a finite-dimensional Hilbert space, in
which case the L2 distance is a natural loss function. SMLM is more complicated: it is
unclear how to compare two sets of points. In this section we argue that, in fact, SMLM is
not so different from simpler inverse problems: while the intermediate output of a SMLM
experiment may be a collection (of varying cardinality) of (possibly weighted) point sources,
the final objective of most SMLM experiments is to render an image. This interpretation
suggests a natural metric: the squared error of the resulting rendered image. We propose
rendering the image at infinite resolution for computational efficiency and using the resulting
L2 distance directly as the training loss function.

In this section we introduce some common notation for the remainder of the chapter and
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formalize the loss function described above. The underlying object to be estimated is a set
of points in Θ ⊂ R2 (or Θ ⊂ R3 for 3D SMLM), γ = {θ1, . . . , θn}. Here θi ∈ Θ is the
location of the i-th fluorophore in space. Note that n, the number of fluorophores active in
the frame, is unknown and varies from frame to frame. While the object to be estimated
is simply a collection of points, we’ll often deal with weighted sets of points, of the form
{(w1, θ1), . . . , (wn, θn)} where wi ∈ R and θi ∈ Θ. The wi will have different interpretations
in different contexts. When we talk about simulating data or using maximum-likelihood
estimation, wi > 0 will be the intensity of the i-th active fluorophore in the frame — that is,
roughly proportional to how many photons that fluorophore emitted during the exposure.
In the output of the neural network, however, wi will be interpreted as a confidence. We’ll
often talk about unweighted sets of points (like γ) as weighted collections, in which case we’ll
take each wi to be one. Finally, it’ll often be convenient to make use of a bijection between
weighted collections of (unique) objects in Θ and finitely-supported atomic measures on Θ.
The bijection associates a weighted collection γ = {(w1, θ1), . . . , (wn, θn)} with the measure

M(γ) =
n∑
i=1

wiδθi .

Here δθ is a point-mass supported on θ. Similarly, if µ is a finitely-supported atomic measure
on Θ, M−1(µ) is a well-defined weighted set of points.

Rendering and loss functional

The final stage in many SMLM experiments is to render an image from the localized fluo-
rophores. In practice, localizations must be convolved with a small convolution kernel before
they are rendered. This blur serves two purposes: first, it allows an image to be formed,
and second it attempts to make explicit uncertainty in the localization, both from the esti-
mation process and from the fact that the fluorophore molecules (which are attached to the
molecules of interest) have nonzero spatial extent. While in many SMLM applications the
resulting images are rendered on a fine grid, we will simply consider the infinite-resolution
image as a functional on R2 or R3. Given a convolution kernel φ ∈ L2(R2) (or R3), the
image generated by the (confidence-weighted) set γ̂ is

Rφ({(ŵ1, θ̂1), . . . , (ŵn̂, θ̂n̂)}) = x 7→
∑
i

ŵiφ(x− θ̂i). (5.1)

Rφ can also be written compactly as a convolution of the measure µ̂ =M(γ̂) with the kernel
φ:

Rφ(µ̂) = φ ∗ µ̂. (5.2)

With this notation in place, we can introduce the family of loss functions we will use.
With convolution kernel φ, let

lφ(γ, γ̂) = ‖Rφ(γ)−Rφ(γ̂)‖2
2. (5.3)
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This expands into the following quadratic form in (w, ŵ):∑
i

∑
l

wiwlK(θi, θl)− 2
∑
i

∑
j

wiŵjK(θi, θ̂j) +
∑
j

∑
k

ŵjŵkK(θ̂j, θ̂k). (5.4)

In the above K(θ, ζ) is the positive semi-definite function defined by

K(θ, ζ) = 〈φ(· − θ), φ(· − ζ)〉L2 . (5.5)

If γ is the true collection of fluorophore locations, we take each wi to be identically one,
while a localization algorithm may use ŵi to encode its confidence that there is a fluorophore
at location θ̂i.

As long as K is known, we can compute (5.3) efficiently, at least when n and n̂ are
relatively small. If n or n̂ are large, any number of truncated or random embeddings will
work to approximate (5.3) [93, 110, 26].

For instance, a typical choice of φ in applications is the standard Gaussian probability
density function at a particular scale σ:

φσ(x) =
1√

2πσ2
e−
‖x‖2

2σ2 ,

which corresponds to

K(x, y) =
1√

8π2σ2
e−
‖x−y‖22

4σ2 . (5.6)

As we’ll see later in §5.5, more exotic choices are possible. In practice, σ is often chosen to
be near the expected localization precision of the system, i.e., 20 to 50 nanometers.

5.3 Maximum-likelihood methods

In this section we briefly describe existing techniques, almost all of which are based on
maximum-likelihood estimation. Maximum-likelihood and regularized maximum-likelihood
methods for inverse problems have proven to be effective over a wide variety of applications,
and SMLM is no exception: the highest-performing SMLM algorithms are all variations on
maximum-likelihood estimation [58, 102]. In this section we describe one family of convex
approximations to the SMLM maximum-likelihood estimation problem.

These approaches assume additional structure in the measurement process and the noise
model, though they seem to work well even when the assumptions aren’t met. First, they
assume that the measurement process is a function of (only) the positions and intensities of
the sources and is given by an operator I. Furthermore, they require that I is additive in
the sources and linear in the intensities:

Iγ =
∑
i

wiφ(θi). (5.7)
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In the above, φ : Θ → Rd is a known function. In microscopy, φ is a spatially-translated
and pixelated copy of the microscope’s on-axis point-spread function. These algorithms
further assume that the negative log-likelihood of the noise distribution is a known convex
function ` : Rd ×Rd → R. For instance, if the per-pixel noise is approximately Gaussian,
then `(x, y) = 1

2
‖x− y‖2

2. A maximum-likelihood estimate of γ is a solution to the following
optimization problem:

minimize
γ̂

`(y, Iγ̂).

Even with these additional assumptions, this optimization problem is quite difficult: γ̂ is of
unknown cardinality, and the objective function is non-convex in the spatial locations of the
fluorophores.

One way to avoid these issues is to lift the optimization variable γ̂ to the measureM(γ̂).
The additional structure described in (5.7) means that the nonlinear measurement operator
I can be extended to a linear operator on measures. For instance, with µ =

∑
iwiδθi :

Iµ =
∑
i

wiφ(θi) =

∫
φ(θ)dµ(θ).

This last expression is well-defined for all signed measures of finite total variation. As the
composition of a linear operator and a convex function is convex, the following optimization
problem is convex in the variable µ:

minimize
µ≥0

`(y, Iµ). (5.8)

Unfortunately, the solution to (5.8) is, in general, not finitely-supported and thus cannot
be interpreted as a weighted collection of points. One heuristic to encourage the solution
of (5.8) to be supported on a small number of points is to add a penalty term on the total
mass of µ: this is the infinite-dimensional analog of the `1 norm. This modification results
in the following (infinite-dimensional) convex optimization problem:

minimize
µ≥0

`(y, Iµ) + λµ(Θ), (5.9)

where λ is a positive parameter. It can be shown that the solution to (5.9) is guaranteed
to be finitely supported [19, 14], and thus can be interpreted as a weighted collection; in
practice, the support of the solution is often extremely sparse. Here λ > 0 allows us to trade
off data fidelity for the cardinality of the support of the estimated measure. State-of-the-art
algorithms for SMLM solve (5.9)[14] or a finite-dimensional, gridded analogue of (5.9)[125,
81, 44, 87].

In practice, these algorithms may also require postprocessing: for instance thresholding
by removing points for which the estimated intensity ŵi is low, or by clustering nearby
localizations [113]. Of some interest are the myriad of theoretical results concerning (5.9):
these results stipulate that if the measurement model I is accurate and some additional
technical assumptions are satisfied, the solution to (5.9) is guaranteed to be close (in some
sense) to the ground truth [104, 41].
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5.4 Function approximation methods for inverse

problems

In this section we briefly discuss related work applying deep learning techniques to inverse
problems.

Recently there has been great interest in using deep neural networks for inverse problems,
especially problems in imaging [77, 80]. We group the field into into two broad groups:
amortized or compiled inference, and iterative, or unrolling approaches.

Amortized or compiled inference attempt to directly learn an approximation F̃−1(y) (or
in some cases an approximation to the full posterior) for the problem y ' F (x), often by
training a network with a very large number of known (x, y) pairs. In the applications
highlighted in [77], including superresolution imaging [66], motion deblurring [122], and
denoising [123], the output of F̃−1 is a dense image. Other recent work [65] has attempted
to learn an inverse model to classify the hand-written MNIST dataset from a camera system
with minimal optics. In this case the predicted output of the network is an integer from zero
to nine. Learning function approximators for inverse problems has a rich history, and multi-
layer neural networks were used beginning 30 years ago for inverse problems [68], including
problems in optics [117]. More contemporary work on compiled inference for probabilistic
programming [72] also extends this approach.

Unrolling approaches take an existing iterative algorithm and replace some components
with a learned operator — either the actual iterative steps themselves (hence the “unrolling”)
or a proximal operator for algorithms with a proximal step. These approaches can exploit
known linearities in the problem. One of the earliest examples is learned iterative shrinkage-
thresholding algorithm (LISTA [47]), which unrolled an iterative-shrinkage and thresholding
algorithm and learned approximations for the adjoint and gram matrix. ADMM-based ap-
proaches [120] learn networks that approximate subproblems in ADMM.

In microscopy, recent work has attempted to learn data-driven methods for upsampling
conventionally acquired images [98, 121], although in all cases, these data-driven methods
make assumptions about the nature of the system under study. Indeed, the authors of [121]
specifically caution against using their method for imaging novel biological structures.

5.5 DeepLoco

In this section we describe how we solve the SMLM inverse problem using a function approx-
imator: we train a neural network to directly minimize expected per-frame loss on simulated
data. We first describe the generative model we use to create training data. We then de-
scribe the loss function and how it can be extended to arbitrary problems involving weighted
collections of objects. Finally we briefly describe the architecture of our network and how
we train it.
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Data generation

The success of function approximation techniques on novel datasets relies on the availability
of vast quantities of labeled training data. We argue that SMLM falls into this class of
problems. The combination of a reasonable generative model for fluorophores and a well-
understood forward model means that, considered as a machine learning problem, SMLM
has essentially infinite training data: we can simulate as many training examples as we
need. Obviously there is still mismatch between the simulated data and any test data we
encounter in the real world; the real question is how this mismatch affects the performance
of our algorithms. In this chapter we show that the mismatch is small enough that we can
obtain good localizations.

The first step in simulating SMLM data is to generate random collections of fluorophores.
For each image we sample the number of fluorophores, n, from a uniform distribution. We
then sample n spatial locations independently and uniformly from a 3D box. We sample the
fluorophore intensities from a uniform distribution.

Next, we run the collection of fluorophores through a forward model to generate noiseless
observations. The forward model we use can be thought of as aggressive data augmentation
and is very easy to apply in practice. We use laterally translated — in most experimental se-
tups the PSFs are invariant to translation in X and Y — versions of an empirically measured
PSF to generate new data. This approach has several advantages over using a fitted func-
tional form. By taking multiple Z-stacks of different fluorophores (or beads), we can train
the network to be robust to aberrations that vary from fluorophore to fluorophore (such as
dipole effects [32]). It also removes the critical preprocessing step of fitting a parametric
model to the Z-stacks and is hyperparameter-free.

The final step in simulating SMLM data is to add noise to the image. In our experiments
we simply use Poisson noise for each pixel. While this is not a great fit for experimental
data, we find that the method is robust enough that this mismatch is not an issue. As we
discuss in §5.7, including a more accurate noise or background model could improve the
performance of our approach.

Loss functions

In §5.2 we introduced a metric for SMLM. While that metric can be used to evaluate the
results of a entire SMLM experiment, in this subsection we show how we use it on single
frames in order to train a neural network. We also describe practical extensions, such as
rendering at multiple scales to help training.

To compute the loss on a single frame we set the weights for the true active fluorophores
to one, resulting in the target collection γ = {(1, θ1), . . . , (1, θn)}. Note that we do not use
weight one to generate the image, each fluorophore has a different intensity for the simulation,
but we set the weights to one when computing the loss. As the number of fluorophores active
in a single image is relatively small (in our experiments at most a few hundred), we use (5.5)
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to compute lφ. For training we use the Laplacian kernel:

K(x, y) =
1

2σ
e−
‖x−y‖1

σ , (5.10)

which corresponds to using the first modified Bessel function of the second kind as the
convolution kernel φ.

In our experiments we found that evaluating the loss function at multiple scales during
training improves the final performance of the network. The loss function is then

`(γ, γ̂) =
∑
i

lφi(γ, γ̂), (5.11)

where each φi is a convolution kernel at a different scale. This loss function can be evaluated
using the quadratic form in (5.5) with K(x, y) =

∑
iKi(x, y), where Ki(x, y) = 〈φi(· −

x), φi(· − y)〉L2 and each φi a convolution kernel at scale σi.

Generalization to other machine learning problems

Readers familiar with reproducing kernel Hilbert spaces [2] will recognize (5.10) and (5.6)
as reproducing kernels. Indeed, another way to think of the metric (5.5) is as the maximum
mean discrepancy [48] between the measures M(γ) = µ and M(γ̂) = µ̂. The maximum
mean discrepancy between µ and µ̂ is given by

MMDK(µ, µ̂) =
1

2
‖Kµ−Kµ̂‖2

H. (5.12)

In the above, H is the RKHS generated by the kernel K. By a slight abuse of notation we
use K to denote the linear operator (with codomain H) defined by

Kµ =

∫
K(θ, ·)dµ(θ).

This suggests an extension of the loss function (5.3) to arbitrary spaces Θ equipped with a
kernel K: simply take

`(γ, γ̂) = MMDK(M(γ),M(γ̂)). (5.13)

For more on the topic of embeddings of weighted collections of points (and general mea-
sures) into RKHS, see [109].

Neural network architecture

We use a fairly standard convolutional neural network architecture. We emphasize that our
contributions are the application of neural networks to the localization problem and the
loss function described above: the architecture of the neural network we use is essentially
arbitrary and almost surely suboptimal. We use the same architecture for both 2D and 3D
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Figure 5.1: A visualization of the DeepLoco architecture. The first two convolutions use 5
x 5 filters, while the remaining convolutions use 3 x 3 filters. Spatial downsampling is by
strided convolution; twice using 2 x 2 filters with stride 2 and once with 4 x 4 filters with
stride 4.

experiments (except for the final layer, which outputs either two or three spatial coordinates).
The first part of the network is fully convolutional (with so-called ReLU nonlinearities) and
alternates three times between performing convolutions at given scale and spatial downsam-
pling by strided convolution. This is followed by a two-layer fully-connected ResNet [54].
Finally, the output of the ResNet is fed into two linear layers that output a fixed (but large)
number, K, of sources. One linear layer outputs K weights; non-negativity of the weights
is enforced by a ReLU nonlinearity. We take K to be much larger than n, the number of
true sources; the network is free to set many of the weights to zero. The second linear layer
outputs a tensor of size K by 2 (or 3, for 3D localization) that encodes the predicted spatial
locations θ̂i. This layer uses a sigmoid nonlinearity to ensure that the estimated locations
remain within a given spatial extent.
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Training

We first simulate a batch of data to use as a validation set during training. During each
training iteration, we simulate a new batch of training data (both spatial locations and
noisy images) and run one step of a stochastic gradient descent variant (in our experiments
either SGD with momentum or ADAM). Every few iterations we evaluate the error on the
validation set; when the error plateaus we reduce the stepsize and reset the optimization
algorithm.

5.6 Experimental results

In this section we compare our algorithm to the existing state-of-the-art algorithms on both
simulated and contest data. The SMLM community has established several [102] contests to
objectively benchmark the performance of these algorithms for both 2D and 3D localization.
In both cases, we compare to the best-performing algorithms for each task: the Alternating
Descent Conditional Gradient method (ADCG) [14] which won the 2016 high-density 2D
challenge, and Spliner [5] (also referred to as CSpline), the winner (for the astigmatic PSF
in low density and the double-helix PSF in both high and low densities) of 2016 3D chal-
lenge. Note that for data generated from our simulator we give both competing algorithms
a handicap : we run them across a range of parameter settings and post-hoc pick the one
that gives the highest Jaccard index. While not feasible in the real world, this helps lessen
the risk of “parameter-hacking”.

To compare the different algorithms in different regimes we vary both the source density
(number of simultaneously active sources per frame) and the signal-to-noise ratio of the point
sources. Reconstruction accuracy can be measured by comparing the estimated locations
directly to the true locations or by comparing high (or infinite) resolution rendered images;
we compute metrics of both types. In all experiments that compare localizations directly we
use simple postprocessing on the output of our method: we cluster the output points into
connected components in a thresholded distance graph and then remove points with low
confidences. To compare localizations directly we follow [102] by first solving an assignment
problem in euclidean space: matching each detected point to a nearby true source point
in a manner that minimizes the total euclidean distance between pairs of points. We then
consider all pairs of matched points closer than a threshold (in our experiments, either
50nm or 100nm) as true positives (TP), and all other source points as false positives (FP).
Similarly, missed ground truth points are considered false negatives (FN). We then compute
the Jaccard index, J,

J =
TP

FN + FP + TP
. (5.14)

A Jaccard index of 1.0 indicates a perfect matching — all source points are recovered
within the tolerance radius, with no spurious detections. With a fixed point matching we
also compute the mean distance between matched pairs, in either x (2D) or x and z (3D).
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Finally, we report the image loss defined in (5.3) for a Gaussian convolution kernel with
σ = 50nm.

2D SMLM

We first compare ADCG and DeepLoco on synthetic data to investigate how each algorithm
performs under varying source conditions. The two dimensional synthetic data is generated
from the 2016 SMLM 2D contest Z-stack. Fluorophores and noisy images are generated
within 350nm of the focal plane over a 6.4µm × 6.4µm area with a per-pixel resolution of
100nm. We present the results in Figure 5.2. DeepLoco and ADCG have similar recognition
accuracy (Jaccard index) and spatial localization accuracy across a variety of point densities
and source intensities.

We also compare ADCG and DeepLoco on the MT0.N1.LD and MT0.N1.HD datasets
from the 2016 SMLM contest in Table 5.2. We find that DeepLoco comparably if not slightly
better than ADCG in the low and high-density cases. This is likely due to the relatively
simplistic Gaussian PSF model used by ADCG, which is a poor fit for some of the datasets’
point sources which do not lie close to the focal plane.

3D SMLM

Three-dimensional SMLM uses point spread functions that vary with source depth, allowing
a fluorophore’s position to be estimated in all three coordinates from a single frame. We
compare DeepLoco to Spliner with two different PSFs: an astigmatic PSF [59] and a double-
helix PSF [88].

We first compare the algorithms on synthetic data generated from the SMLM challenge
calibration Z-stacks. These experiments (in Figure 5.3) show that DeepLoco significantly
outperforms Spliner in terms of Jaccard index, while Spliner is slightly better in localization
accuracy with the astigmatic PSF.

We next compare the algorithms on the MT0.N1.LD and MT0.N1.HD datasets from the
2016 SMLM challenge. We evaluate the results visually in Figure 5.4 and using quantitative
metrics in Table 5.1. DeepLoco significantly outperforms Spliner in terms of Jaccard index
and the kernel loss. The two algorithms are comparable in terms of spatial localization ac-
curacy, except for the low-density double-helix data, where Spliner significantly outperforms
DeepLoco.

Runtime

DeepLoco is significantly faster than ADCG and Spliner. While DeepLoco runs in (essen-
tially) constant time regardless of fluorophore density, both ADCG and Spliner have iterative
components that scale with the number of input sources. We run the algorithms on subsets
of data from the SMLM 2016 contest to capture the runtime dependence on source density
(Table 5.3). DeepLoco was run on an Amazon Web Services p3.2xlarge instance with a
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Figure 5.2: 2D localization using DeepLoco and ADCG. All point matchings are computed
with a 50nm tolerance radius. We vary the source density (a. and b.) and source intensity
(c. and d.) and compare localization performance via Jaccard index and RMSE in the
x-coordinate. For experiments with varying source intensity we use a fixed density of 0.2
molecules per µm2. We find DeepLoco performs virtually identically to ADCG across the
full range of tested parameters. e. and f. show example source images and the localizations
returned by each algorithm.

single Nvidia V100 GPU. ADCG and Spliner were run on the equivalent of an Amazon Web
Services c4.8xlarge machine with 18 physical cores (though ADCG and Spline are not
optimized to take advantage of multiple cores).

On high-density data, DeepLoco is roughly 40000 times faster than ADCG and 2000
times faster than Spliner.

5.7 Extensions and variations

In this section we briefly describe some extensions to this work.
The successful application of machine learning techniques to the SMLM inverse problem

opens up a new path to better SMLM algorithms: developing more accurate simulators.
Raw SMLM data rarely looks like the output of the simulators we use in this chapter. This
discrepancy has two main causes: structured background fluorescence and aberrations in
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Low Density SMLM 2016 3D Data

PSF Algorithm Jaccard x RMSE (nm) z RMSE (nm) kernel loss
3D-AS DeepLoco 0.83± 0.33 11.83± 11.02 24.80± 17.85 0.38± 0.54

Spliner 0.77± 0.37 9.88± 9.77 22.34± 18.45 0.49± 0.75
3D-DH DeepLoco 0.84± 0.30 17.25± 13.52 22.35± 16.71 0.67± 0.88

Spliner 0.74± 0.36 11.85± 12.04 15.99± 15.04 0.65± 0.94

High Density SMLM 2016 3D Data

PSF Algorithm Jaccard x RMSE (nm) z RMSE (nm) kernel loss
3D-AS DeepLoco 0.51± 0.16 16.12± 6.56 27.30± 8.56 6.49± 3.41

Spliner 0.37± 0.16 14.89± 7.42 27.83± 10.91 9.18± 4.56
3D-DH DeepLoco 0.39± 0.19 23.60± 9.32 28.89± 9.98 9.43± 6.35

Spliner 0.27± 0.14 24.26± 11.87 25.13± 11.93 11.36± 5.13

Table 5.1: Reconstruction metrics for various algorithms across 3D datasets. All point
matchings are computed with a 100nm tolerance radius. Values are mean ± standard devi-
ation.

Density Algorithm Jaccard x RMSE (nm) kernel loss
Low DeepLoco 0.89± 0.26 11.61± 12.27 0.22± 0.45

ADCG 0.79± 0.35 14.95± 13.27 0.50± 0.84
High DeepLoco 0.61± 0.16 18.22± 7.24 5.22± 3.29

ADCG 0.53± 0.15 19.36± 7.43 6.63± 3.60

Table 5.2: Reconstruction metrics for DeepLoco and ADCG across high and low-density 2D
datasets. All point matchings are computed with a 100nm tolerance radius.Values are mean
± standard deviation.

Table 5.3: Algorithm runtime for different datasets from the 2016 SMLM challenge

Algorithm (frames/second)

PSF Density ADCG Spliner DeepLoco
2D low 2.2 20859

high 0.44 20859
3D-AS low 40.6 20859

high 9.9 19742
3D-DH low 63.5 20859

high 9.3 20806
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Figure 5.3: 3D localization of synthetic data by DeepLoco and Spliner. All point matchings
are computed with a 50nm tolerance radius. For experiments with varying source intensity
we use a fixed density of 0.2 molecules per µm2. Error bars reflect a 95% confidence interval
on the mean estimated by the bootstrap. While the Jaccard index suggests that localization
at very high densities (i.e. 10 sources per µm) fails, both Spliner and DeepLoco produce
reasonable images — suggesting that if the goal is to render an image the Jaccard index is
not a representative metric.

the optical system. In existing algorithms these issues are typically handled using delicate,
heuristic preprocessing steps. Our approach suggests a different approach: training a neural
network with a simulator that directly models background noise and aberrations.

One issue exposed in our experiments is the sensitivity of our networks to mismatch
between the training distribution and the test distribution. For instance, and unlike any
existing approach, our network can return less accurate localizations for extremely bright
fluorophores. This bizarre behavior can be explained by a mismatch between the training
distribution and the test distribution: networks trained to localize (relatively) low SNR
sources do not generalize to higher SNR sources. Investigating and mitigating this issue
would increase confidence in our approach.

From a statistical point of view, processing each frame independently is highly subopti-
mal: the photophysics of the fluorophore molecules is such that fluorophores active in one
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Figure 5.4: Super-resolution images rendered by DeepLoco and Spliner on the SMLM2016
MT0.N1.HD high-density dataset for both astigmatic and double-helix PSFs.

frame are often active in neighboring frames. Because localization accuracy is limited by the
photon count of each emitter [85], analyzing multiple frames together could greatly increase
accuracy. It’s also possible that analyzing multiple frames could help localizing much higher
densities of emitters: at high densities emitters that are spatially overlapping still blink inde-
pendently. Several existing techniques analyze multiple frames [27, 18, 111] but are limited
by computational cost. The increased processing speed provided by using a feedforward neu-
ral network might allow efficient analysis of multiple frames and would be straightforward
to implement.

Programmable spatial light modulators allow experimenters to change the point spread
function of the microscope to, for instance, localize over much larger depths [107]. A neural
network that takes the phase mask in addition to the raw image as input might be able to
localize using a huge variety of point-spread functions.

A related question is how to reduce the expense of training the neural network for new
experimental conditions (e.g. different noise levels or background conditions). While training
time in our experiments was typically on the order of a few hours, preliminary experiments
with warmstarting the optimization from pre-trained networks suggest this can be signifi-
cantly reduced.

The loss function we introduce is a natural loss function for a variety of classification
tasks where the labels are collections of parametric objects, for instance object detection [39].
Comparing the maximum mean discrepancy to existing loss functions would be interesting.
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Another possibility for SMLM or other classification problems with set-valued labels is to
use different distances between discrete measures: for instance unbalanced optimal trans-
port [23].

Finally, it is unclear how other machine learning techniques would do if applied to this
problem. Indeed, it is quite possible that the machinery of deep learning is unnecessary and
a simpler algorithm such as k-nearest neighbors would suffice.

5.8 Conclusion

A novel kernel-based loss function allowed us to train a neural network to directly localize
sparse emitters in both two and three dimensions. DeepLoco is orders of magnitude faster
than existing approaches, while achieving comparable accuracy. The success of DeepLoco
suggests that there are regimes where coupling a naive black-box simulator with machine
learning can efficiently solve inverse problems; even problems with complex, structured out-
puts. More physically accurate simulation, including accurately modeling phenomena that
would preclude the application of traditional optimization-based approaches, could further
improve accuracy.
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